285 lines
14 KiB
Python
285 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" DPT model configuration"""
|
|
|
|
import copy
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
from ..auto.configuration_auto import CONFIG_MAPPING
|
|
from ..bit import BitConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class DPTConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`DPTModel`]. It is used to instantiate an DPT
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the DPT
|
|
[Intel/dpt-large](https://huggingface.co/Intel/dpt-large) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
|
The epsilon used by the layer normalization layers.
|
|
image_size (`int`, *optional*, defaults to 384):
|
|
The size (resolution) of each image.
|
|
patch_size (`int`, *optional*, defaults to 16):
|
|
The size (resolution) of each patch.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
is_hybrid (`bool`, *optional*, defaults to `False`):
|
|
Whether to use a hybrid backbone. Useful in the context of loading DPT-Hybrid models.
|
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
|
Whether to add a bias to the queries, keys and values.
|
|
backbone_out_indices (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
|
|
Indices of the intermediate hidden states to use from backbone.
|
|
readout_type (`str`, *optional*, defaults to `"project"`):
|
|
The readout type to use when processing the readout token (CLS token) of the intermediate hidden states of
|
|
the ViT backbone. Can be one of [`"ignore"`, `"add"`, `"project"`].
|
|
|
|
- "ignore" simply ignores the CLS token.
|
|
- "add" passes the information from the CLS token to all other tokens by adding the representations.
|
|
- "project" passes information to the other tokens by concatenating the readout to all other tokens before
|
|
projecting the
|
|
representation to the original feature dimension D using a linear layer followed by a GELU non-linearity.
|
|
reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`):
|
|
The up/downsampling factors of the reassemble layers.
|
|
neck_hidden_sizes (`List[str]`, *optional*, defaults to `[96, 192, 384, 768]`):
|
|
The hidden sizes to project to for the feature maps of the backbone.
|
|
fusion_hidden_size (`int`, *optional*, defaults to 256):
|
|
The number of channels before fusion.
|
|
head_in_index (`int`, *optional*, defaults to -1):
|
|
The index of the features to use in the heads.
|
|
use_batch_norm_in_fusion_residual (`bool`, *optional*, defaults to `False`):
|
|
Whether to use batch normalization in the pre-activate residual units of the fusion blocks.
|
|
use_bias_in_fusion_residual (`bool`, *optional*, defaults to `True`):
|
|
Whether to use bias in the pre-activate residual units of the fusion blocks.
|
|
add_projection (`bool`, *optional*, defaults to `False`):
|
|
Whether to add a projection layer before the depth estimation head.
|
|
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
|
|
Whether to use an auxiliary head during training.
|
|
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
|
|
Weight of the cross-entropy loss of the auxiliary head.
|
|
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
|
The index that is ignored by the loss function of the semantic segmentation model.
|
|
semantic_classifier_dropout (`float`, *optional*, defaults to 0.1):
|
|
The dropout ratio for the semantic classification head.
|
|
backbone_featmap_shape (`List[int]`, *optional*, defaults to `[1, 1024, 24, 24]`):
|
|
Used only for the `hybrid` embedding type. The shape of the feature maps of the backbone.
|
|
neck_ignore_stages (`List[int]`, *optional*, defaults to `[0, 1]`):
|
|
Used only for the `hybrid` embedding type. The stages of the readout layers to ignore.
|
|
backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*):
|
|
The configuration of the backbone model. Only used in case `is_hybrid` is `True` or in case you want to
|
|
leverage the [`AutoBackbone`] API.
|
|
backbone (`str`, *optional*):
|
|
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
|
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
|
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
|
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
|
|
Whether to use pretrained weights for the backbone.
|
|
use_timm_backbone (`bool`, *optional*, defaults to `False`):
|
|
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
|
|
library.
|
|
backbone_kwargs (`dict`, *optional*):
|
|
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
|
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import DPTModel, DPTConfig
|
|
|
|
>>> # Initializing a DPT dpt-large style configuration
|
|
>>> configuration = DPTConfig()
|
|
|
|
>>> # Initializing a model from the dpt-large style configuration
|
|
>>> model = DPTModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "dpt"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
intermediate_size=3072,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.0,
|
|
attention_probs_dropout_prob=0.0,
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-12,
|
|
image_size=384,
|
|
patch_size=16,
|
|
num_channels=3,
|
|
is_hybrid=False,
|
|
qkv_bias=True,
|
|
backbone_out_indices=[2, 5, 8, 11],
|
|
readout_type="project",
|
|
reassemble_factors=[4, 2, 1, 0.5],
|
|
neck_hidden_sizes=[96, 192, 384, 768],
|
|
fusion_hidden_size=256,
|
|
head_in_index=-1,
|
|
use_batch_norm_in_fusion_residual=False,
|
|
use_bias_in_fusion_residual=None,
|
|
add_projection=False,
|
|
use_auxiliary_head=True,
|
|
auxiliary_loss_weight=0.4,
|
|
semantic_loss_ignore_index=255,
|
|
semantic_classifier_dropout=0.1,
|
|
backbone_featmap_shape=[1, 1024, 24, 24],
|
|
neck_ignore_stages=[0, 1],
|
|
backbone_config=None,
|
|
backbone=None,
|
|
use_pretrained_backbone=False,
|
|
use_timm_backbone=False,
|
|
backbone_kwargs=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.is_hybrid = is_hybrid
|
|
|
|
if use_pretrained_backbone:
|
|
raise ValueError("Pretrained backbones are not supported yet.")
|
|
|
|
use_autobackbone = False
|
|
if self.is_hybrid:
|
|
if backbone_config is None and backbone is None:
|
|
logger.info("Initializing the config with a `BiT` backbone.")
|
|
backbone_config = {
|
|
"global_padding": "same",
|
|
"layer_type": "bottleneck",
|
|
"depths": [3, 4, 9],
|
|
"out_features": ["stage1", "stage2", "stage3"],
|
|
"embedding_dynamic_padding": True,
|
|
}
|
|
backbone_config = BitConfig(**backbone_config)
|
|
elif isinstance(backbone_config, dict):
|
|
logger.info("Initializing the config with a `BiT` backbone.")
|
|
backbone_config = BitConfig(**backbone_config)
|
|
elif isinstance(backbone_config, PretrainedConfig):
|
|
backbone_config = backbone_config
|
|
else:
|
|
raise ValueError(
|
|
f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}."
|
|
)
|
|
self.backbone_config = backbone_config
|
|
self.backbone_featmap_shape = backbone_featmap_shape
|
|
self.neck_ignore_stages = neck_ignore_stages
|
|
|
|
if readout_type != "project":
|
|
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.")
|
|
|
|
elif backbone_config is not None:
|
|
use_autobackbone = True
|
|
|
|
if isinstance(backbone_config, dict):
|
|
backbone_model_type = backbone_config.get("model_type")
|
|
config_class = CONFIG_MAPPING[backbone_model_type]
|
|
backbone_config = config_class.from_dict(backbone_config)
|
|
|
|
self.backbone_config = backbone_config
|
|
self.backbone_featmap_shape = None
|
|
self.neck_ignore_stages = []
|
|
else:
|
|
self.backbone_config = backbone_config
|
|
self.backbone_featmap_shape = None
|
|
self.neck_ignore_stages = []
|
|
|
|
if use_autobackbone and backbone_config is not None and backbone is not None:
|
|
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
|
|
|
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
|
|
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
|
|
|
self.backbone = backbone
|
|
self.use_pretrained_backbone = use_pretrained_backbone
|
|
self.use_timm_backbone = use_timm_backbone
|
|
self.backbone_kwargs = backbone_kwargs
|
|
self.num_hidden_layers = None if use_autobackbone else num_hidden_layers
|
|
self.num_attention_heads = None if use_autobackbone else num_attention_heads
|
|
self.intermediate_size = None if use_autobackbone else intermediate_size
|
|
self.hidden_dropout_prob = None if use_autobackbone else hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = None if use_autobackbone else attention_probs_dropout_prob
|
|
self.layer_norm_eps = None if use_autobackbone else layer_norm_eps
|
|
self.image_size = None if use_autobackbone else image_size
|
|
self.patch_size = None if use_autobackbone else patch_size
|
|
self.num_channels = None if use_autobackbone else num_channels
|
|
self.qkv_bias = None if use_autobackbone else qkv_bias
|
|
self.backbone_out_indices = None if use_autobackbone else backbone_out_indices
|
|
|
|
if readout_type not in ["ignore", "add", "project"]:
|
|
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']")
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.readout_type = readout_type
|
|
self.reassemble_factors = reassemble_factors
|
|
self.neck_hidden_sizes = neck_hidden_sizes
|
|
self.fusion_hidden_size = fusion_hidden_size
|
|
self.head_in_index = head_in_index
|
|
self.use_batch_norm_in_fusion_residual = use_batch_norm_in_fusion_residual
|
|
self.use_bias_in_fusion_residual = use_bias_in_fusion_residual
|
|
self.add_projection = add_projection
|
|
|
|
# auxiliary head attributes (semantic segmentation)
|
|
self.use_auxiliary_head = use_auxiliary_head
|
|
self.auxiliary_loss_weight = auxiliary_loss_weight
|
|
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
|
self.semantic_classifier_dropout = semantic_classifier_dropout
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
|
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
|
"""
|
|
output = copy.deepcopy(self.__dict__)
|
|
|
|
if output["backbone_config"] is not None:
|
|
output["backbone_config"] = self.backbone_config.to_dict()
|
|
|
|
output["model_type"] = self.__class__.model_type
|
|
return output
|