ai-content-maker/.venv/Lib/site-packages/transformers/models/fsmt/tokenization_fsmt.py

520 lines
19 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FSMT."""
import json
import os
import re
import unicodedata
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"src_vocab_file": "vocab-src.json",
"tgt_vocab_file": "vocab-tgt.json",
"merges_file": "merges.txt",
}
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def replace_unicode_punct(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
"""
text = text.replace("", ",")
text = re.sub(r"\s*", ". ", text)
text = text.replace("", ",")
text = text.replace("", '"')
text = text.replace("", '"')
text = text.replace("", ":")
text = text.replace("", ":")
text = text.replace("", "?")
text = text.replace("", '"')
text = text.replace("", '"')
text = text.replace("", ")")
text = text.replace("", "!")
text = text.replace("", "(")
text = text.replace("", ";")
text = text.replace("", "1")
text = text.replace("", '"')
text = text.replace("", '"')
text = text.replace("", "0")
text = text.replace("", "3")
text = text.replace("", "2")
text = text.replace("", "5")
text = text.replace("", "6")
text = text.replace("", "9")
text = text.replace("", "7")
text = text.replace("", "8")
text = text.replace("", "4")
text = re.sub(r"\s*", ". ", text)
text = text.replace("", "~")
text = text.replace("", "'")
text = text.replace("", "...")
text = text.replace("", "-")
text = text.replace("", "<")
text = text.replace("", ">")
text = text.replace("", "[")
text = text.replace("", "]")
text = text.replace("", "%")
return text
def remove_non_printing_char(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
"""
output = []
for char in text:
cat = unicodedata.category(char)
if cat.startswith("C"):
continue
output.append(char)
return "".join(output)
# Porting notes:
# this one is modeled after XLMTokenizer
#
# added:
# - src_vocab_file,
# - tgt_vocab_file,
# - langs,
class FSMTTokenizer(PreTrainedTokenizer):
"""
Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
- Moses preprocessing and tokenization.
- Normalizing all inputs text.
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
"__classify__") to a vocabulary.
- The argument `langs` defines a pair of languages.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
langs (`List[str]`, *optional*):
A list of two languages to translate from and to, for instance `["en", "ru"]`.
src_vocab_file (`str`, *optional*):
File containing the vocabulary for the source language.
tgt_vocab_file (`st`, *optional*):
File containing the vocabulary for the target language.
merges_file (`str`, *optional*):
File containing the merges.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
langs=None,
src_vocab_file=None,
tgt_vocab_file=None,
merges_file=None,
do_lower_case=False,
unk_token="<unk>",
bos_token="<s>",
sep_token="</s>",
pad_token="<pad>",
**kwargs,
):
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
self.src_vocab_file = src_vocab_file
self.tgt_vocab_file = tgt_vocab_file
self.merges_file = merges_file
self.do_lower_case = do_lower_case
# cache of sm.MosesPunctNormalizer instance
self.cache_moses_punct_normalizer = {}
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = {}
self.cache_moses_detokenizer = {}
if langs and len(langs) == 2:
self.src_lang, self.tgt_lang = langs
else:
raise ValueError(
f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. "
"Usually that means that tokenizer can't find a mapping for the given model path "
"in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer."
)
with open(src_vocab_file, encoding="utf-8") as src_vocab_handle:
self.encoder = json.load(src_vocab_handle)
with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle:
tgt_vocab = json.load(tgt_vocab_handle)
self.decoder = {v: k for k, v in tgt_vocab.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
langs=langs,
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
bos_token=bos_token,
sep_token=sep_token,
pad_token=pad_token,
**kwargs,
)
# hack override
def get_vocab(self) -> Dict[str, int]:
return self.get_src_vocab()
# hack override
@property
def vocab_size(self) -> int:
return self.src_vocab_size
def moses_punct_norm(self, text, lang):
if lang not in self.cache_moses_punct_normalizer:
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
self.cache_moses_punct_normalizer[lang] = punct_normalizer
return self.cache_moses_punct_normalizer[lang].normalize(text)
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
return self.cache_moses_tokenizer[lang].tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=True
)
def moses_detokenize(self, tokens, lang):
if lang not in self.cache_moses_detokenizer:
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang)
self.cache_moses_detokenizer[lang] = moses_detokenizer
return self.cache_moses_detokenizer[lang].detokenize(tokens)
def moses_pipeline(self, text, lang):
text = replace_unicode_punct(text)
text = self.moses_punct_norm(text, lang)
text = remove_non_printing_char(text)
return text
@property
def src_vocab_size(self):
return len(self.encoder)
@property
def tgt_vocab_size(self):
return len(self.decoder)
def get_src_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self):
return dict(self.decoder, **self.added_tokens_decoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def _tokenize(self, text, lang="en", bypass_tokenizer=False):
"""
Tokenize a string given language code using Moses.
Details of tokenization:
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
- Install with `pip install sacremoses`
Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
(bool). If True, we only apply BPE.
Returns:
List of tokens.
"""
# ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en
# if lang != self.src_lang:
# raise ValueError(f"Expected lang={self.src_lang}, but got {lang}")
lang = self.src_lang
if self.do_lower_case:
text = text.lower()
if bypass_tokenizer:
text = text.split()
else:
text = self.moses_pipeline(text, lang=lang)
text = self.moses_tokenize(text, lang=lang)
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# remove BPE
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
tokens = "".join(tokens).split()
# detokenize
text = self.moses_detokenize(tokens, self.tgt_lang)
return text
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A FAIRSEQ Transformer sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return token_ids_0 + sep
return token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# no bos used in fairseq
if token_ids_1 is not None:
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
Transformer sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An
FAIRSEQ_TRANSFORMER sequence pair mask has the following format:
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
src_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"]
)
tgt_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"]
)
merges_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(src_vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
with open(tgt_vocab_file, "w", encoding="utf-8") as f:
tgt_vocab = {v: k for k, v in self.decoder.items()}
f.write(json.dumps(tgt_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merges_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return src_vocab_file, tgt_vocab_file, merges_file
def __getstate__(self):
state = self.__dict__.copy()
state["sm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses