224 lines
11 KiB
Python
224 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Jamba model configuration"""
|
|
import math
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class JambaConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
|
|
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the Jamba-v0.1 model.
|
|
|
|
[ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 65536):
|
|
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`JambaModel`]
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
|
model has a output word embedding layer.
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 14336):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
|
|
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
|
|
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
|
|
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
|
|
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
|
|
significantly.
|
|
output_router_logits (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the router logits should be returned by the model. Enabling this will also
|
|
allow the model to output the auxiliary loss. See [here]() for more details
|
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
|
The aux loss factor for the total loss.
|
|
pad_token_id (`int`, *optional*, defaults to 0):
|
|
The id of the padding token.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
The id of the "beginning-of-sequence" token.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the "end-of-sequence" token.
|
|
sliding_window (`int`, *optional*):
|
|
Sliding window attention window size. If not specified, will default to `None`.
|
|
max_position_embeddings (`int`, *optional*, defaults to 262144):
|
|
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
|
|
used with. It can be used with longer sequences, but performance may degrade.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
|
parameter
|
|
num_experts (`int`, *optional*, defaults to 16):
|
|
Number of experts per Sparse MLP layer.
|
|
expert_layer_period (`int`, *optional*, defaults to 2):
|
|
Once in this many layers, we will have an expert layer
|
|
expert_layer_offset (`int`, *optional*, defaults to 1):
|
|
The first layer index that contains an expert mlp layer
|
|
attn_layer_period (`int`, *optional*, defaults to 8):
|
|
Once in this many layers, we will have a vanilla attention layer
|
|
attn_layer_offset (`int`, *optional*, defaults to 4):
|
|
The first layer index that contains a vanilla attention mlp layer
|
|
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
|
|
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
|
|
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
|
|
`True` and kernels are not available
|
|
mamba_d_state (`int`, *optional*, defaults to 16):
|
|
The dimension the mamba state space latents
|
|
mamba_d_conv (`int`, *optional*, defaults to 4):
|
|
The size of the mamba convolution kernel
|
|
mamba_expand (`int`, *optional*, defaults to 2):
|
|
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
|
|
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
|
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
|
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
|
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
|
|
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
|
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
|
|
|
|
"""
|
|
|
|
model_type = "jamba"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=65536,
|
|
tie_word_embeddings=False,
|
|
hidden_size=4096,
|
|
intermediate_size=14336,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=8,
|
|
hidden_act="silu",
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
num_logits_to_keep=1,
|
|
output_router_logits=False,
|
|
router_aux_loss_coef=0.001,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
sliding_window=None,
|
|
max_position_embeddings=262144,
|
|
attention_dropout=0.0,
|
|
num_experts_per_tok=2,
|
|
num_experts=16,
|
|
expert_layer_period=2,
|
|
expert_layer_offset=1,
|
|
attn_layer_period=8,
|
|
attn_layer_offset=4,
|
|
use_mamba_kernels=True,
|
|
mamba_d_state=16,
|
|
mamba_d_conv=4,
|
|
mamba_expand=2,
|
|
mamba_dt_rank="auto",
|
|
mamba_conv_bias=True,
|
|
mamba_proj_bias=False,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.sliding_window = sliding_window
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.attention_dropout = attention_dropout
|
|
|
|
# for backward compatibility
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
|
|
self.use_cache = use_cache
|
|
self.num_logits_to_keep = num_logits_to_keep
|
|
self.output_router_logits = output_router_logits
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.num_experts = num_experts
|
|
self.expert_layer_period = expert_layer_period
|
|
self.expert_layer_offset = expert_layer_offset
|
|
self.attn_layer_period = attn_layer_period
|
|
self.attn_layer_offset = attn_layer_offset
|
|
|
|
self.use_mamba_kernels = use_mamba_kernels
|
|
self.mamba_d_state = mamba_d_state
|
|
self.mamba_d_conv = mamba_d_conv
|
|
self.mamba_expand = mamba_expand
|
|
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
|
|
self.mamba_conv_bias = mamba_conv_bias
|
|
self.mamba_proj_bias = mamba_proj_bias
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def layers_block_type(self):
|
|
return [
|
|
"attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba"
|
|
for i in range(self.num_hidden_layers)
|
|
]
|
|
|
|
@property
|
|
def layers_num_experts(self):
|
|
return [
|
|
self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1
|
|
for i in range(self.num_hidden_layers)
|
|
]
|