355 lines
16 KiB
Python
355 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import sentencepiece as spm
|
|
|
|
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
SPIECE_UNDERLINE = "▁"
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
|
|
|
|
|
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
|
|
|
|
|
|
class MBart50Tokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|
this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
src_lang (`str`, *optional*):
|
|
A string representing the source language.
|
|
tgt_lang (`str`, *optional*):
|
|
A string representing the target language.
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The end of sequence token.
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|
sequence classification or for a text and a question for question answering. It is also used as the last
|
|
token of a sequence built with special tokens.
|
|
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
|
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
|
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
|
The token used for masking values. This is the token used when training this model with masked language
|
|
modeling. This is the token which the model will try to predict.
|
|
sp_model_kwargs (`dict`, *optional*):
|
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
|
to set:
|
|
|
|
- `enable_sampling`: Enable subword regularization.
|
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
|
|
|
- `nbest_size = {0,1}`: No sampling is performed.
|
|
- `nbest_size > 1`: samples from the nbest_size results.
|
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
|
using forward-filtering-and-backward-sampling algorithm.
|
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
|
BPE-dropout.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import MBart50Tokenizer
|
|
|
|
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
|
|
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
|
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
|
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
|
>>> # model(**model_inputs) should work
|
|
```"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
prefix_tokens: List[int] = []
|
|
suffix_tokens: List[int] = []
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
src_lang=None,
|
|
tgt_lang=None,
|
|
eos_token="</s>",
|
|
sep_token="</s>",
|
|
cls_token="<s>",
|
|
unk_token="<unk>",
|
|
pad_token="<pad>",
|
|
mask_token="<mask>",
|
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
|
**kwargs,
|
|
) -> None:
|
|
# Mask token behave like a normal word, i.e. include the space before it
|
|
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
|
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
|
|
|
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
|
|
kwargs["additional_special_tokens"] += [
|
|
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
|
|
]
|
|
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
|
self.sp_model.Load(str(vocab_file))
|
|
self.vocab_file = vocab_file
|
|
|
|
# Original fairseq vocab and spm vocab must be "aligned":
|
|
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
|
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
|
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
|
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
|
|
|
# Mimic fairseq token-to-id alignment for the first 4 token
|
|
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
|
|
|
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
|
self.fairseq_offset = 1
|
|
|
|
self.sp_model_size = len(self.sp_model)
|
|
self.lang_code_to_id = {
|
|
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
|
|
}
|
|
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
|
|
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
|
|
|
|
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
|
|
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
|
|
|
super().__init__(
|
|
src_lang=src_lang,
|
|
tgt_lang=tgt_lang,
|
|
eos_token=eos_token,
|
|
unk_token=unk_token,
|
|
sep_token=sep_token,
|
|
cls_token=cls_token,
|
|
pad_token=pad_token,
|
|
mask_token=mask_token,
|
|
sp_model_kwargs=self.sp_model_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
|
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
|
|
self.tgt_lang = tgt_lang
|
|
self.set_src_lang_special_tokens(self._src_lang)
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
|
|
|
|
@property
|
|
def src_lang(self) -> str:
|
|
return self._src_lang
|
|
|
|
@src_lang.setter
|
|
def src_lang(self, new_src_lang: str) -> None:
|
|
self._src_lang = new_src_lang
|
|
self.set_src_lang_special_tokens(self._src_lang)
|
|
|
|
def __getstate__(self) -> Dict:
|
|
state = self.__dict__.copy()
|
|
state["sp_model"] = None
|
|
return state
|
|
|
|
def __setstate__(self, d: Dict) -> None:
|
|
self.__dict__ = d
|
|
|
|
# for backward compatibility
|
|
if not hasattr(self, "sp_model_kwargs"):
|
|
self.sp_model_kwargs = {}
|
|
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
|
self.sp_model.Load(self.vocab_file)
|
|
|
|
def get_vocab(self) -> Dict:
|
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
def _tokenize(self, text: str) -> List[str]:
|
|
return self.sp_model.encode(text, out_type=str)
|
|
|
|
def _convert_token_to_id(self, token: str) -> int:
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
if token in self.fairseq_tokens_to_ids:
|
|
return self.fairseq_tokens_to_ids[token]
|
|
spm_id = self.sp_model.PieceToId(token)
|
|
|
|
# Need to return unknown token if the SP model returned 0
|
|
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
|
|
|
def _convert_id_to_token(self, index: int) -> str:
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
if index in self.fairseq_ids_to_tokens:
|
|
return self.fairseq_ids_to_tokens[index]
|
|
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
|
|
|
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
current_sub_tokens = []
|
|
out_string = ""
|
|
prev_is_special = False
|
|
for token in tokens:
|
|
# make sure that special tokens are not decoded using sentencepiece model
|
|
if token in self.all_special_tokens:
|
|
if not prev_is_special:
|
|
out_string += " "
|
|
out_string += self.sp_model.decode(current_sub_tokens) + token
|
|
prev_is_special = True
|
|
current_sub_tokens = []
|
|
else:
|
|
current_sub_tokens.append(token)
|
|
prev_is_special = False
|
|
out_string += self.sp_model.decode(current_sub_tokens)
|
|
return out_string.strip()
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|
return
|
|
out_vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
elif not os.path.isfile(self.vocab_file):
|
|
with open(out_vocab_file, "wb") as fi:
|
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
|
fi.write(content_spiece_model)
|
|
|
|
return (out_vocab_file,)
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
prefix_ones = [1] * len(self.prefix_tokens)
|
|
suffix_ones = [1] * len(self.suffix_tokens)
|
|
if token_ids_1 is None:
|
|
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
|
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence:
|
|
|
|
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
|
|
- `labels`: (for decoder) `[tgt_lang_code] X [eos]`
|
|
|
|
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
|
separator.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
|
# We don't expect to process pairs, but leave the pair logic for API consistency
|
|
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
|
|
|
def _build_translation_inputs(
|
|
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
|
):
|
|
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
|
if src_lang is None or tgt_lang is None:
|
|
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
|
self.src_lang = src_lang
|
|
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
|
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
|
inputs["forced_bos_token_id"] = tgt_lang_id
|
|
return inputs
|
|
|
|
def prepare_seq2seq_batch(
|
|
self,
|
|
src_texts: List[str],
|
|
src_lang: str = "en_XX",
|
|
tgt_texts: Optional[List[str]] = None,
|
|
tgt_lang: str = "ro_RO",
|
|
**kwargs,
|
|
) -> BatchEncoding:
|
|
self.src_lang = src_lang
|
|
self.tgt_lang = tgt_lang
|
|
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
|
|
|
def _switch_to_input_mode(self):
|
|
return self.set_src_lang_special_tokens(self.src_lang)
|
|
|
|
def _switch_to_target_mode(self):
|
|
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
|
|
|
def set_src_lang_special_tokens(self, src_lang: str) -> None:
|
|
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
|
|
self.cur_lang_code_id = self.lang_code_to_id[src_lang]
|
|
self.prefix_tokens = [self.cur_lang_code_id]
|
|
self.suffix_tokens = [self.eos_token_id]
|
|
|
|
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
|
|
"""Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos]."""
|
|
self.cur_lang_code_id = self.lang_code_to_id[tgt_lang]
|
|
self.prefix_tokens = [self.cur_lang_code_id]
|
|
self.suffix_tokens = [self.eos_token_id]
|