ai-content-maker/.venv/Lib/site-packages/transformers/models/mobilevitv2/configuration_mobilevitv2.py

169 lines
7.0 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MobileViTV2 model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class MobileViTV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a
MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileViTV2
[apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 256):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 2):
The size (resolution) of each patch.
expand_ratio (`float`, *optional*, defaults to 2.0):
Expansion factor for the MobileNetv2 layers.
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
conv_kernel_size (`int`, *optional*, defaults to 3):
The size of the convolutional kernel in the MobileViTV2 layer.
output_stride (`int`, *optional*, defaults to 32):
The ratio of the spatial resolution of the output to the resolution of the input image.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
aspp_out_channels (`int`, *optional*, defaults to 512):
Number of output channels used in the ASPP layer for semantic segmentation.
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the ASPP layer for semantic segmentation.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`):
The number of attention blocks in each MobileViTV2Layer
base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`):
The base multiplier for dimensions of attention blocks in each MobileViTV2Layer
width_multiplier (`float`, *optional*, defaults to 1.0):
The width multiplier for MobileViTV2.
ffn_multiplier (`int`, *optional*, defaults to 2):
The FFN multiplier for MobileViTV2.
attn_dropout (`float`, *optional*, defaults to 0.0):
The dropout in the attention layer.
ffn_dropout (`float`, *optional*, defaults to 0.0):
The dropout between FFN layers.
Example:
```python
>>> from transformers import MobileViTV2Config, MobileViTV2Model
>>> # Initializing a mobilevitv2-small style configuration
>>> configuration = MobileViTV2Config()
>>> # Initializing a model from the mobilevitv2-small style configuration
>>> model = MobileViTV2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilevitv2"
def __init__(
self,
num_channels=3,
image_size=256,
patch_size=2,
expand_ratio=2.0,
hidden_act="swish",
conv_kernel_size=3,
output_stride=32,
classifier_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
aspp_out_channels=512,
atrous_rates=[6, 12, 18],
aspp_dropout_prob=0.1,
semantic_loss_ignore_index=255,
n_attn_blocks=[2, 4, 3],
base_attn_unit_dims=[128, 192, 256],
width_multiplier=1.0,
ffn_multiplier=2,
attn_dropout=0.0,
ffn_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.expand_ratio = expand_ratio
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.n_attn_blocks = n_attn_blocks
self.base_attn_unit_dims = base_attn_unit_dims
self.width_multiplier = width_multiplier
self.ffn_multiplier = ffn_multiplier
self.ffn_dropout = ffn_dropout
self.attn_dropout = attn_dropout
self.classifier_dropout_prob = classifier_dropout_prob
# decode head attributes for semantic segmentation
self.aspp_out_channels = aspp_out_channels
self.atrous_rates = atrous_rates
self.aspp_dropout_prob = aspp_dropout_prob
self.semantic_loss_ignore_index = semantic_loss_ignore_index
class MobileViTV2OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4