95 lines
3.9 KiB
Python
95 lines
3.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" RegNet model configuration"""
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
from ..deprecated._archive_maps import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
|
|
|
|
|
class RegNetConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the RegNet
|
|
[facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
embedding_size (`int`, *optional*, defaults to 64):
|
|
Dimensionality (hidden size) for the embedding layer.
|
|
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
|
|
Dimensionality (hidden size) at each stage.
|
|
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
|
|
Depth (number of layers) for each stage.
|
|
layer_type (`str`, *optional*, defaults to `"y"`):
|
|
The layer to use, it can be either `"x" or `"y"`. An `x` layer is a ResNet's BottleNeck layer with
|
|
`reduction` fixed to `1`. While a `y` layer is a `x` but with squeeze and excitation. Please refer to the
|
|
paper for a detailed explanation of how these layers were constructed.
|
|
hidden_act (`str`, *optional*, defaults to `"relu"`):
|
|
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
|
|
are supported.
|
|
downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
|
|
If `True`, the first stage will downsample the inputs using a `stride` of 2.
|
|
|
|
Example:
|
|
```python
|
|
>>> from transformers import RegNetConfig, RegNetModel
|
|
|
|
>>> # Initializing a RegNet regnet-y-40 style configuration
|
|
>>> configuration = RegNetConfig()
|
|
>>> # Initializing a model from the regnet-y-40 style configuration
|
|
>>> model = RegNetModel(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```
|
|
"""
|
|
|
|
model_type = "regnet"
|
|
layer_types = ["x", "y"]
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels=3,
|
|
embedding_size=32,
|
|
hidden_sizes=[128, 192, 512, 1088],
|
|
depths=[2, 6, 12, 2],
|
|
groups_width=64,
|
|
layer_type="y",
|
|
hidden_act="relu",
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
if layer_type not in self.layer_types:
|
|
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
|
|
self.num_channels = num_channels
|
|
self.embedding_size = embedding_size
|
|
self.hidden_sizes = hidden_sizes
|
|
self.depths = depths
|
|
self.groups_width = groups_width
|
|
self.layer_type = layer_type
|
|
self.hidden_act = hidden_act
|
|
# always downsample in the first stage
|
|
self.downsample_in_first_stage = True
|