2084 lines
91 KiB
Python
2084 lines
91 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
PyTorch XLNet model.
|
|
"""
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from ...activations import ACT2FN
|
|
from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary
|
|
from ...pytorch_utils import apply_chunking_to_forward
|
|
from ...utils import (
|
|
ModelOutput,
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from .configuration_xlnet import XLNetConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased"
|
|
_CONFIG_FOR_DOC = "XLNetConfig"
|
|
|
|
|
|
from ..deprecated._archive_maps import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
|
|
|
|
|
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
|
|
"""
|
|
A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch
|
|
model as possible.
|
|
"""
|
|
|
|
tf_to_pt_map = {}
|
|
|
|
if hasattr(model, "transformer"):
|
|
if hasattr(model, "lm_loss"):
|
|
# We will load also the output bias
|
|
tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias
|
|
if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights:
|
|
# We will load also the sequence summary
|
|
tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight
|
|
tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias
|
|
if (
|
|
hasattr(model, "logits_proj")
|
|
and config.finetuning_task is not None
|
|
and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights
|
|
):
|
|
tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight
|
|
tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias
|
|
|
|
# Now load the rest of the transformer
|
|
model = model.transformer
|
|
|
|
# Embeddings and output
|
|
tf_to_pt_map.update(
|
|
{
|
|
"model/transformer/word_embedding/lookup_table": model.word_embedding.weight,
|
|
"model/transformer/mask_emb/mask_emb": model.mask_emb,
|
|
}
|
|
)
|
|
|
|
# Transformer blocks
|
|
for i, b in enumerate(model.layer):
|
|
layer_str = f"model/transformer/layer_{i}/"
|
|
tf_to_pt_map.update(
|
|
{
|
|
layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
|
|
layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
|
|
layer_str + "rel_attn/o/kernel": b.rel_attn.o,
|
|
layer_str + "rel_attn/q/kernel": b.rel_attn.q,
|
|
layer_str + "rel_attn/k/kernel": b.rel_attn.k,
|
|
layer_str + "rel_attn/r/kernel": b.rel_attn.r,
|
|
layer_str + "rel_attn/v/kernel": b.rel_attn.v,
|
|
layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
|
|
layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
|
|
layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
|
|
layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
|
|
layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
|
|
layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
|
|
}
|
|
)
|
|
|
|
# Relative positioning biases
|
|
if config.untie_r:
|
|
r_r_list = []
|
|
r_w_list = []
|
|
r_s_list = []
|
|
seg_embed_list = []
|
|
for b in model.layer:
|
|
r_r_list.append(b.rel_attn.r_r_bias)
|
|
r_w_list.append(b.rel_attn.r_w_bias)
|
|
r_s_list.append(b.rel_attn.r_s_bias)
|
|
seg_embed_list.append(b.rel_attn.seg_embed)
|
|
else:
|
|
r_r_list = [model.r_r_bias]
|
|
r_w_list = [model.r_w_bias]
|
|
r_s_list = [model.r_s_bias]
|
|
seg_embed_list = [model.seg_embed]
|
|
tf_to_pt_map.update(
|
|
{
|
|
"model/transformer/r_r_bias": r_r_list,
|
|
"model/transformer/r_w_bias": r_w_list,
|
|
"model/transformer/r_s_bias": r_s_list,
|
|
"model/transformer/seg_embed": seg_embed_list,
|
|
}
|
|
)
|
|
return tf_to_pt_map
|
|
|
|
|
|
def load_tf_weights_in_xlnet(model, config, tf_path):
|
|
"""Load tf checkpoints in a pytorch model"""
|
|
try:
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
logger.error(
|
|
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions."
|
|
)
|
|
raise
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
tf_weights = {}
|
|
for name, shape in init_vars:
|
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
|
array = tf.train.load_variable(tf_path, name)
|
|
tf_weights[name] = array
|
|
|
|
# Build TF to PyTorch weights loading map
|
|
tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
|
|
|
|
for name, pointer in tf_to_pt_map.items():
|
|
logger.info(f"Importing {name}")
|
|
if name not in tf_weights:
|
|
logger.info(f"{name} not in tf pre-trained weights, skipping")
|
|
continue
|
|
array = tf_weights[name]
|
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
|
# which are not required for using pretrained model
|
|
if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name):
|
|
logger.info("Transposing")
|
|
array = np.transpose(array)
|
|
if isinstance(pointer, list):
|
|
# Here we will split the TF weights
|
|
assert (
|
|
len(pointer) == array.shape[0]
|
|
), f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched"
|
|
for i, p_i in enumerate(pointer):
|
|
arr_i = array[i, ...]
|
|
try:
|
|
assert (
|
|
p_i.shape == arr_i.shape
|
|
), f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched"
|
|
except AssertionError as e:
|
|
e.args += (p_i.shape, arr_i.shape)
|
|
raise
|
|
logger.info(f"Initialize PyTorch weight {name} for layer {i}")
|
|
p_i.data = torch.from_numpy(arr_i)
|
|
else:
|
|
try:
|
|
assert (
|
|
pointer.shape == array.shape
|
|
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
logger.info(f"Initialize PyTorch weight {name}")
|
|
pointer.data = torch.from_numpy(array)
|
|
tf_weights.pop(name, None)
|
|
tf_weights.pop(name + "/Adam", None)
|
|
tf_weights.pop(name + "/Adam_1", None)
|
|
|
|
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
|
|
return model
|
|
|
|
|
|
class XLNetRelativeAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
|
|
if config.d_model % config.n_head != 0:
|
|
raise ValueError(
|
|
f"The hidden size ({config.d_model}) is not a multiple of the number of attention "
|
|
f"heads ({config.n_head}"
|
|
)
|
|
|
|
self.n_head = config.n_head
|
|
self.d_head = config.d_head
|
|
self.d_model = config.d_model
|
|
self.scale = 1 / (config.d_head**0.5)
|
|
|
|
self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
|
|
self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
|
|
self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
|
|
self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
|
|
self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
|
|
|
|
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
|
self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
|
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
|
self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))
|
|
|
|
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def prune_heads(self, heads):
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def rel_shift(x, klen=-1):
|
|
"""perform relative shift to form the relative attention score."""
|
|
x_size = x.shape
|
|
|
|
x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
|
|
x = x[1:, ...]
|
|
x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
|
|
# x = x[:, 0:klen, :, :]
|
|
x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
|
|
|
|
return x
|
|
|
|
@staticmethod
|
|
def rel_shift_bnij(x, klen=-1):
|
|
x_size = x.shape
|
|
|
|
x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2])
|
|
x = x[:, :, 1:, :]
|
|
x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1)
|
|
# Note: the tensor-slice form was faster in my testing than torch.index_select
|
|
# However, tracing doesn't like the nature of the slice, and if klen changes
|
|
# during the run then it'll fail, whereas index_select will be fine.
|
|
x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long))
|
|
# x = x[:, :, :, :klen]
|
|
|
|
return x
|
|
|
|
def rel_attn_core(
|
|
self,
|
|
q_head,
|
|
k_head_h,
|
|
v_head_h,
|
|
k_head_r,
|
|
seg_mat=None,
|
|
attn_mask=None,
|
|
head_mask=None,
|
|
output_attentions=False,
|
|
):
|
|
"""Core relative positional attention operations."""
|
|
|
|
# content based attention score
|
|
ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h)
|
|
|
|
# position based attention score
|
|
bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r)
|
|
bd = self.rel_shift_bnij(bd, klen=ac.shape[3])
|
|
|
|
# segment based attention score
|
|
if seg_mat is None:
|
|
ef = 0
|
|
else:
|
|
ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed)
|
|
ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef)
|
|
|
|
# merge attention scores and perform masking
|
|
attn_score = (ac + bd + ef) * self.scale
|
|
if attn_mask is not None:
|
|
# attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
|
|
if attn_mask.dtype == torch.float16:
|
|
attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask)
|
|
else:
|
|
attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask)
|
|
|
|
# attention probability
|
|
attn_prob = nn.functional.softmax(attn_score, dim=3)
|
|
attn_prob = self.dropout(attn_prob)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask)
|
|
|
|
# attention output
|
|
attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h)
|
|
|
|
if output_attentions:
|
|
return attn_vec, torch.einsum("bnij->ijbn", attn_prob)
|
|
|
|
return attn_vec
|
|
|
|
def post_attention(self, h, attn_vec, residual=True):
|
|
"""Post-attention processing."""
|
|
# post-attention projection (back to `d_model`)
|
|
attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o)
|
|
|
|
attn_out = self.dropout(attn_out)
|
|
if residual:
|
|
attn_out = attn_out + h
|
|
output = self.layer_norm(attn_out)
|
|
|
|
return output
|
|
|
|
def forward(
|
|
self,
|
|
h,
|
|
g,
|
|
attn_mask_h,
|
|
attn_mask_g,
|
|
r,
|
|
seg_mat,
|
|
mems=None,
|
|
target_mapping=None,
|
|
head_mask=None,
|
|
output_attentions=False,
|
|
):
|
|
if g is not None:
|
|
# Two-stream attention with relative positional encoding.
|
|
# content based attention score
|
|
if mems is not None and mems.dim() > 1:
|
|
cat = torch.cat([mems, h], dim=0)
|
|
else:
|
|
cat = h
|
|
|
|
# content-based key head
|
|
k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
|
|
|
|
# content-based value head
|
|
v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)
|
|
|
|
# position-based key head
|
|
k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r)
|
|
|
|
# h-stream
|
|
# content-stream query head
|
|
q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
|
|
|
|
# core attention ops
|
|
attn_vec_h = self.rel_attn_core(
|
|
q_head_h,
|
|
k_head_h,
|
|
v_head_h,
|
|
k_head_r,
|
|
seg_mat=seg_mat,
|
|
attn_mask=attn_mask_h,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
if output_attentions:
|
|
attn_vec_h, attn_prob_h = attn_vec_h
|
|
|
|
# post processing
|
|
output_h = self.post_attention(h, attn_vec_h)
|
|
|
|
# g-stream
|
|
# query-stream query head
|
|
q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q)
|
|
|
|
# core attention ops
|
|
if target_mapping is not None:
|
|
q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
|
|
attn_vec_g = self.rel_attn_core(
|
|
q_head_g,
|
|
k_head_h,
|
|
v_head_h,
|
|
k_head_r,
|
|
seg_mat=seg_mat,
|
|
attn_mask=attn_mask_g,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
if output_attentions:
|
|
attn_vec_g, attn_prob_g = attn_vec_g
|
|
|
|
attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
|
|
else:
|
|
attn_vec_g = self.rel_attn_core(
|
|
q_head_g,
|
|
k_head_h,
|
|
v_head_h,
|
|
k_head_r,
|
|
seg_mat=seg_mat,
|
|
attn_mask=attn_mask_g,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
if output_attentions:
|
|
attn_vec_g, attn_prob_g = attn_vec_g
|
|
|
|
# post processing
|
|
output_g = self.post_attention(g, attn_vec_g)
|
|
|
|
if output_attentions:
|
|
attn_prob = attn_prob_h, attn_prob_g
|
|
|
|
else:
|
|
# Multi-head attention with relative positional encoding
|
|
if mems is not None and mems.dim() > 1:
|
|
cat = torch.cat([mems, h], dim=0)
|
|
else:
|
|
cat = h
|
|
|
|
# content heads
|
|
q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
|
|
k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
|
|
v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)
|
|
|
|
# positional heads
|
|
# type casting for fp16 support
|
|
k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r)
|
|
|
|
# core attention ops
|
|
attn_vec = self.rel_attn_core(
|
|
q_head_h,
|
|
k_head_h,
|
|
v_head_h,
|
|
k_head_r,
|
|
seg_mat=seg_mat,
|
|
attn_mask=attn_mask_h,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
if output_attentions:
|
|
attn_vec, attn_prob = attn_vec
|
|
|
|
# post processing
|
|
output_h = self.post_attention(h, attn_vec)
|
|
output_g = None
|
|
|
|
outputs = (output_h, output_g)
|
|
if output_attentions:
|
|
outputs = outputs + (attn_prob,)
|
|
return outputs
|
|
|
|
|
|
class XLNetFeedForward(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
|
self.layer_1 = nn.Linear(config.d_model, config.d_inner)
|
|
self.layer_2 = nn.Linear(config.d_inner, config.d_model)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
if isinstance(config.ff_activation, str):
|
|
self.activation_function = ACT2FN[config.ff_activation]
|
|
else:
|
|
self.activation_function = config.ff_activation
|
|
|
|
def forward(self, inp):
|
|
output = inp
|
|
output = self.layer_1(output)
|
|
output = self.activation_function(output)
|
|
output = self.dropout(output)
|
|
output = self.layer_2(output)
|
|
output = self.dropout(output)
|
|
output = self.layer_norm(output + inp)
|
|
return output
|
|
|
|
|
|
class XLNetLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.rel_attn = XLNetRelativeAttention(config)
|
|
self.ff = XLNetFeedForward(config)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
self.seq_len_dim = 1
|
|
|
|
def forward(
|
|
self,
|
|
output_h,
|
|
output_g,
|
|
attn_mask_h,
|
|
attn_mask_g,
|
|
r,
|
|
seg_mat,
|
|
mems=None,
|
|
target_mapping=None,
|
|
head_mask=None,
|
|
output_attentions=False,
|
|
):
|
|
outputs = self.rel_attn(
|
|
output_h,
|
|
output_g,
|
|
attn_mask_h,
|
|
attn_mask_g,
|
|
r,
|
|
seg_mat,
|
|
mems=mems,
|
|
target_mapping=target_mapping,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
output_h, output_g = outputs[:2]
|
|
|
|
if output_g is not None:
|
|
output_g = apply_chunking_to_forward(
|
|
self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g
|
|
)
|
|
output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h)
|
|
|
|
outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there
|
|
return outputs
|
|
|
|
def ff_chunk(self, output_x):
|
|
output_x = self.ff(output_x)
|
|
return output_x
|
|
|
|
|
|
class XLNetPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = XLNetConfig
|
|
load_tf_weights = load_tf_weights_in_xlnet
|
|
base_model_prefix = "transformer"
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights."""
|
|
if isinstance(module, nn.Linear):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
elif isinstance(module, XLNetRelativeAttention):
|
|
for param in [
|
|
module.q,
|
|
module.k,
|
|
module.v,
|
|
module.o,
|
|
module.r,
|
|
module.r_r_bias,
|
|
module.r_s_bias,
|
|
module.r_w_bias,
|
|
module.seg_embed,
|
|
]:
|
|
param.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
elif isinstance(module, XLNetModel):
|
|
module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
|
|
|
|
@dataclass
|
|
class XLNetModelOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetModel`].
|
|
|
|
Args:
|
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`):
|
|
Sequence of hidden-states at the last layer of the model.
|
|
|
|
`num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
|
|
corresponds to `sequence_length`.
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
last_hidden_state: torch.FloatTensor
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
@dataclass
|
|
class XLNetLMHeadModelOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetLMHeadModel`].
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
|
|
Language modeling loss (for next-token prediction).
|
|
logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`):
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
|
|
`num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
|
|
corresponds to `sequence_length`.
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
@dataclass
|
|
class XLNetForSequenceClassificationOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetForSequenceClassification`].
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
|
|
Classification (or regression if config.num_labels==1) loss.
|
|
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
|
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
@dataclass
|
|
class XLNetForTokenClassificationOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetForTokenClassificationOutput`].
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
|
|
Classification loss.
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
|
|
Classification scores (before SoftMax).
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
@dataclass
|
|
class XLNetForMultipleChoiceOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetForMultipleChoice`].
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
|
|
Classification loss.
|
|
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
|
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
|
|
|
|
Classification scores (before SoftMax).
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
@dataclass
|
|
class XLNetForQuestionAnsweringSimpleOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetForQuestionAnsweringSimple`].
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
|
|
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
|
|
Span-start scores (before SoftMax).
|
|
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
|
|
Span-end scores (before SoftMax).
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
start_logits: torch.FloatTensor = None
|
|
end_logits: torch.FloatTensor = None
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
@dataclass
|
|
class XLNetForQuestionAnsweringOutput(ModelOutput):
|
|
"""
|
|
Output type of [`XLNetForQuestionAnswering`].
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
|
|
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
|
|
losses.
|
|
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
|
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
|
|
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
|
Indices for the top config.start_n_top start token possibilities (beam-search).
|
|
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
|
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
|
|
(beam-search).
|
|
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
|
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
|
|
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
|
Log probabilities for the `is_impossible` label of the answers.
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
|
|
token ids which have their past given to this model should not be passed as `input_ids` as they have
|
|
already been computed.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
start_top_log_probs: Optional[torch.FloatTensor] = None
|
|
start_top_index: Optional[torch.LongTensor] = None
|
|
end_top_log_probs: Optional[torch.FloatTensor] = None
|
|
end_top_index: Optional[torch.LongTensor] = None
|
|
cls_logits: Optional[torch.FloatTensor] = None
|
|
mems: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
|
|
|
|
|
XLNET_START_DOCSTRING = r"""
|
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`XLNetConfig`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
XLNET_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
|
Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
|
|
decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
|
|
they have already been computed.
|
|
|
|
`use_mems` has to be set to `True` to make use of `mems`.
|
|
perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
|
|
Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
|
|
|
|
- if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
|
|
- if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
|
|
|
|
If not set, each token attends to all the others (full bidirectional attention). Only used during
|
|
pretraining (to define factorization order) or for sequential decoding (generation).
|
|
target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
|
|
Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
|
|
on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
|
|
(generation).
|
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
|
1]`:
|
|
|
|
- 0 corresponds to a *sentence A* token,
|
|
- 1 corresponds to a *sentence B* token.
|
|
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
input_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
|
|
real tokens and 1 for padding which is kept for compatibility with the original code base.
|
|
|
|
Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **masked**,
|
|
- 0 for tokens that are **not masked**.
|
|
|
|
You can only uses one of `input_mask` and `attention_mask`.
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetModel(XLNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.mem_len = config.mem_len
|
|
self.reuse_len = config.reuse_len
|
|
self.d_model = config.d_model
|
|
self.same_length = config.same_length
|
|
self.attn_type = config.attn_type
|
|
self.bi_data = config.bi_data
|
|
self.clamp_len = config.clamp_len
|
|
self.n_layer = config.n_layer
|
|
|
|
self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
|
|
self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
|
|
self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.word_embedding
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.word_embedding = new_embeddings
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
raise NotImplementedError
|
|
|
|
def create_mask(self, qlen, mlen):
|
|
"""
|
|
Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
|
|
|
|
Args:
|
|
qlen: Sequence length
|
|
mlen: Mask length
|
|
|
|
::
|
|
|
|
same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen >
|
|
^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
|
|
[0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
|
|
qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
|
|
[0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
|
|
v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
|
|
|
|
"""
|
|
mask = torch.ones((qlen, qlen + mlen), device=self.device)
|
|
if self.same_length:
|
|
mask_lo = mask[:, :qlen].tril(-1)
|
|
mask.triu_(mlen + 1)
|
|
mask[:, :qlen] += mask_lo
|
|
else:
|
|
mask.triu_(mlen + 1)
|
|
|
|
return mask
|
|
|
|
def cache_mem(self, curr_out, prev_mem):
|
|
# cache hidden states into memory.
|
|
if self.reuse_len is not None and self.reuse_len > 0:
|
|
curr_out = curr_out[: self.reuse_len]
|
|
|
|
if self.mem_len is None or self.mem_len == 0:
|
|
# If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time
|
|
# and returns all of the past and current hidden states.
|
|
cutoff = 0
|
|
else:
|
|
# If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden
|
|
# states. This is the preferred setting for training and long-form generation.
|
|
cutoff = -self.mem_len
|
|
if prev_mem is None:
|
|
# if `use_mems` is active and `mem_len` is defined, the model
|
|
new_mem = curr_out[cutoff:]
|
|
else:
|
|
new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:]
|
|
|
|
return new_mem.detach()
|
|
|
|
@staticmethod
|
|
def positional_embedding(pos_seq, inv_freq, bsz=None):
|
|
sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq)
|
|
pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
|
|
pos_emb = pos_emb[:, None, :]
|
|
|
|
if bsz is not None:
|
|
pos_emb = pos_emb.expand(-1, bsz, -1)
|
|
|
|
return pos_emb
|
|
|
|
def relative_positional_encoding(self, qlen, klen, bsz=None):
|
|
# create relative positional encoding.
|
|
freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.int64).float()
|
|
inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
|
|
|
|
if self.attn_type == "bi":
|
|
# beg, end = klen - 1, -qlen
|
|
beg, end = klen, -qlen
|
|
elif self.attn_type == "uni":
|
|
# beg, end = klen - 1, -1
|
|
beg, end = klen, -1
|
|
else:
|
|
raise ValueError(f"Unknown `attn_type` {self.attn_type}.")
|
|
|
|
if self.bi_data:
|
|
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
|
|
bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.int64).float()
|
|
|
|
if self.clamp_len > 0:
|
|
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
|
|
if bsz is not None:
|
|
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
|
|
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
|
|
else:
|
|
fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
|
|
bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
|
|
|
|
pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
|
|
else:
|
|
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
|
|
if self.clamp_len > 0:
|
|
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
|
|
|
|
return pos_emb
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=XLNetModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete after depreciation warning is removed
|
|
) -> Union[Tuple, XLNetModelOutput]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if "use_cache" in kwargs:
|
|
warnings.warn(
|
|
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`"
|
|
" instead.",
|
|
FutureWarning,
|
|
)
|
|
use_mems = kwargs["use_cache"]
|
|
|
|
if self.training:
|
|
use_mems = use_mems if use_mems is not None else self.config.use_mems_train
|
|
else:
|
|
use_mems = use_mems if use_mems is not None else self.config.use_mems_eval
|
|
|
|
# the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
|
|
# but we want a unified interface in the library with the batch size on the first dimension
|
|
# so we move here the first dimension (batch) to the end
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_ids = input_ids.transpose(0, 1).contiguous()
|
|
qlen, bsz = input_ids.shape[0], input_ids.shape[1]
|
|
elif inputs_embeds is not None:
|
|
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
|
|
qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
|
|
input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
|
|
attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
|
|
perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
|
|
target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
|
|
|
|
mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
|
|
klen = mlen + qlen
|
|
|
|
dtype_float = self.dtype
|
|
device = self.device
|
|
|
|
# Attention mask
|
|
# causal attention mask
|
|
if self.attn_type == "uni":
|
|
attn_mask = self.create_mask(qlen, mlen)
|
|
attn_mask = attn_mask[:, :, None, None]
|
|
elif self.attn_type == "bi":
|
|
attn_mask = None
|
|
else:
|
|
raise ValueError(f"Unsupported attention type: {self.attn_type}")
|
|
|
|
# data mask: input mask & perm mask
|
|
assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
|
|
"or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one."
|
|
if input_mask is None and attention_mask is not None:
|
|
input_mask = 1.0 - attention_mask
|
|
if input_mask is not None and perm_mask is not None:
|
|
data_mask = input_mask[None] + perm_mask
|
|
elif input_mask is not None and perm_mask is None:
|
|
data_mask = input_mask[None]
|
|
elif input_mask is None and perm_mask is not None:
|
|
data_mask = perm_mask
|
|
else:
|
|
data_mask = None
|
|
|
|
if data_mask is not None:
|
|
# all mems can be attended to
|
|
if mlen > 0:
|
|
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
|
|
data_mask = torch.cat([mems_mask, data_mask], dim=1)
|
|
if attn_mask is None:
|
|
attn_mask = data_mask[:, :, :, None]
|
|
else:
|
|
attn_mask += data_mask[:, :, :, None]
|
|
|
|
if attn_mask is not None:
|
|
attn_mask = (attn_mask > 0).to(dtype_float)
|
|
|
|
if attn_mask is not None:
|
|
non_tgt_mask = -torch.eye(qlen).to(attn_mask)
|
|
if mlen > 0:
|
|
non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
|
|
non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
|
|
else:
|
|
non_tgt_mask = None
|
|
|
|
# Word embeddings and prepare h & g hidden states
|
|
if inputs_embeds is not None:
|
|
word_emb_k = inputs_embeds
|
|
else:
|
|
word_emb_k = self.word_embedding(input_ids)
|
|
output_h = self.dropout(word_emb_k)
|
|
if target_mapping is not None:
|
|
word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
|
|
# else: # We removed the inp_q input which was same as target mapping
|
|
# inp_q_ext = inp_q[:, :, None]
|
|
# word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
|
|
output_g = self.dropout(word_emb_q)
|
|
else:
|
|
output_g = None
|
|
|
|
# Segment embedding
|
|
if token_type_ids is not None:
|
|
# Convert `token_type_ids` to one-hot `seg_mat`
|
|
if mlen > 0:
|
|
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
|
|
cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
|
|
else:
|
|
cat_ids = token_type_ids
|
|
|
|
# `1` indicates not in the same segment [qlen x klen x bsz]
|
|
seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
|
|
seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float)
|
|
else:
|
|
seg_mat = None
|
|
|
|
# Positional encoding
|
|
pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
|
|
pos_emb = pos_emb.to(output_h.device)
|
|
pos_emb = self.dropout(pos_emb)
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
|
|
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
|
|
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
|
|
head_mask = head_mask.to(
|
|
dtype=next(self.parameters()).dtype
|
|
) # switch to float if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.n_layer
|
|
|
|
new_mems = ()
|
|
if mems is None:
|
|
mems = [None] * len(self.layer)
|
|
|
|
attentions = [] if output_attentions else None
|
|
hidden_states = [] if output_hidden_states else None
|
|
for i, layer_module in enumerate(self.layer):
|
|
if use_mems:
|
|
# cache new mems
|
|
new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
|
|
if output_hidden_states:
|
|
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
|
|
|
|
outputs = layer_module(
|
|
output_h,
|
|
output_g,
|
|
attn_mask_h=non_tgt_mask,
|
|
attn_mask_g=attn_mask,
|
|
r=pos_emb,
|
|
seg_mat=seg_mat,
|
|
mems=mems[i],
|
|
target_mapping=target_mapping,
|
|
head_mask=head_mask[i],
|
|
output_attentions=output_attentions,
|
|
)
|
|
output_h, output_g = outputs[:2]
|
|
if output_attentions:
|
|
attentions.append(outputs[2])
|
|
|
|
# Add last hidden state
|
|
if output_hidden_states:
|
|
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
|
|
|
|
output = self.dropout(output_g if output_g is not None else output_h)
|
|
|
|
# Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
|
|
output = output.permute(1, 0, 2).contiguous()
|
|
|
|
if not use_mems:
|
|
new_mems = None
|
|
|
|
if output_hidden_states:
|
|
if output_g is not None:
|
|
hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
|
|
else:
|
|
hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
|
|
|
|
if output_attentions:
|
|
if target_mapping is not None:
|
|
# when target_mapping is provided, there are 2-tuple of attentions
|
|
attentions = tuple(
|
|
tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions
|
|
)
|
|
else:
|
|
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None)
|
|
|
|
return XLNetModelOutput(
|
|
last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
|
|
""",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetLMHeadModel(XLNetPreTrainedModel):
|
|
_tied_weights_keys = ["lm_loss.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.attn_type = config.attn_type
|
|
self.same_length = config.same_length
|
|
|
|
self.transformer = XLNetModel(config)
|
|
self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_loss
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_loss = new_embeddings
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs):
|
|
# Add dummy token at the end (no attention on this one)
|
|
|
|
effective_batch_size = input_ids.shape[0]
|
|
dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device)
|
|
|
|
# At every pass, the attention values for the new token and the two last generated tokens
|
|
# are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have
|
|
# offset = 1; offset = 2 seems to have slightly better computation.
|
|
offset = 2
|
|
|
|
if past_key_values:
|
|
input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1)
|
|
else:
|
|
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
|
|
|
# Build permutation mask so that previous tokens don't see last token
|
|
sequence_length = input_ids.shape[1]
|
|
perm_mask = torch.zeros(
|
|
(effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device
|
|
)
|
|
perm_mask[:, :, -1] = 1.0
|
|
|
|
# We'll only predict the last token
|
|
target_mapping = torch.zeros(
|
|
(effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device
|
|
)
|
|
target_mapping[:, 0, -1] = 1.0
|
|
|
|
inputs = {
|
|
"input_ids": input_ids,
|
|
"perm_mask": perm_mask,
|
|
"target_mapping": target_mapping,
|
|
"use_mems": use_mems,
|
|
}
|
|
|
|
# if past is defined in model kwargs then use it for faster decoding
|
|
if past_key_values:
|
|
inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values)
|
|
|
|
return inputs
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete when `use_cache` is removed in XLNetModel
|
|
) -> Union[Tuple, XLNetLMHeadModelOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*):
|
|
Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If
|
|
`target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`.
|
|
|
|
The labels should correspond to the masked input words that should be predicted and depends on
|
|
`target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has
|
|
to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below)
|
|
|
|
Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss
|
|
is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
Return:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, XLNetLMHeadModel
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
|
|
>>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")
|
|
|
|
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
|
|
>>> input_ids = torch.tensor(
|
|
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
|
|
... ).unsqueeze(
|
|
... 0
|
|
... ) # We will predict the masked token
|
|
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
|
|
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
|
>>> target_mapping = torch.zeros(
|
|
... (1, 1, input_ids.shape[1]), dtype=torch.float
|
|
... ) # Shape [1, 1, seq_length] => let's predict one token
|
|
>>> target_mapping[
|
|
... 0, 0, -1
|
|
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
|
|
|
|
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
|
|
>>> next_token_logits = outputs[
|
|
... 0
|
|
... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
|
|
|
|
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
|
|
>>> input_ids = torch.tensor(
|
|
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
|
|
... ).unsqueeze(
|
|
... 0
|
|
... ) # We will predict the masked token
|
|
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
|
|
>>> assert labels.shape[0] == 1, "only one word will be predicted"
|
|
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
|
|
>>> perm_mask[
|
|
... :, :, -1
|
|
... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
|
|
>>> target_mapping = torch.zeros(
|
|
... (1, 1, input_ids.shape[1]), dtype=torch.float
|
|
... ) # Shape [1, 1, seq_length] => let's predict one token
|
|
>>> target_mapping[
|
|
... 0, 0, -1
|
|
... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
|
|
|
|
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
|
|
>>> loss = outputs.loss
|
|
>>> next_token_logits = (
|
|
... outputs.logits
|
|
... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
mems=mems,
|
|
perm_mask=perm_mask,
|
|
target_mapping=target_mapping,
|
|
token_type_ids=token_type_ids,
|
|
input_mask=input_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_mems=use_mems,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs,
|
|
)
|
|
|
|
logits = self.lm_loss(transformer_outputs[0])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return XLNetLMHeadModelOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
mems=transformer_outputs.mems,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
|
|
"""
|
|
This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
|
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
|
|
generation step.
|
|
"""
|
|
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
|
|
for GLUE tasks.
|
|
""",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetForSequenceClassification(XLNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.config = config
|
|
|
|
self.transformer = XLNetModel(config)
|
|
self.sequence_summary = SequenceSummary(config)
|
|
self.logits_proj = nn.Linear(config.d_model, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=XLNetForSequenceClassificationOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete when `use_cache` is removed in XLNetModel
|
|
) -> Union[Tuple, XLNetForSequenceClassificationOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
mems=mems,
|
|
perm_mask=perm_mask,
|
|
target_mapping=target_mapping,
|
|
token_type_ids=token_type_ids,
|
|
input_mask=input_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_mems=use_mems,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs,
|
|
)
|
|
output = transformer_outputs[0]
|
|
|
|
output = self.sequence_summary(output)
|
|
logits = self.logits_proj(output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return XLNetForSequenceClassificationOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
mems=transformer_outputs.mems,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetForTokenClassification(XLNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.transformer = XLNetModel(config)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=XLNetForTokenClassificationOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete when `use_cache` is removed in XLNetModel
|
|
) -> Union[Tuple, XLNetForTokenClassificationOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
|
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
mems=mems,
|
|
perm_mask=perm_mask,
|
|
target_mapping=target_mapping,
|
|
token_type_ids=token_type_ids,
|
|
input_mask=input_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_mems=use_mems,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.classifier(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return XLNetForTokenClassificationOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
mems=outputs.mems,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
|
softmax) e.g. for RACE/SWAG tasks.
|
|
""",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetForMultipleChoice(XLNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.transformer = XLNetModel(config)
|
|
self.sequence_summary = SequenceSummary(config)
|
|
self.logits_proj = nn.Linear(config.d_model, 1)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=XLNetForMultipleChoiceOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete when `use_cache` is removed in XLNetModel
|
|
) -> Union[Tuple, XLNetForMultipleChoiceOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
|
`input_ids` above)
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
|
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
|
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
|
flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None
|
|
flat_inputs_embeds = (
|
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
|
if inputs_embeds is not None
|
|
else None
|
|
)
|
|
|
|
transformer_outputs = self.transformer(
|
|
flat_input_ids,
|
|
token_type_ids=flat_token_type_ids,
|
|
input_mask=flat_input_mask,
|
|
attention_mask=flat_attention_mask,
|
|
mems=mems,
|
|
perm_mask=perm_mask,
|
|
target_mapping=target_mapping,
|
|
head_mask=head_mask,
|
|
inputs_embeds=flat_inputs_embeds,
|
|
use_mems=use_mems,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs,
|
|
)
|
|
|
|
output = transformer_outputs[0]
|
|
|
|
output = self.sequence_summary(output)
|
|
logits = self.logits_proj(output)
|
|
reshaped_logits = logits.view(-1, num_choices)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(reshaped_logits, labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (reshaped_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return XLNetForMultipleChoiceOutput(
|
|
loss=loss,
|
|
logits=reshaped_logits,
|
|
mems=transformer_outputs.mems,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.transformer = XLNetModel(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=XLNetForQuestionAnsweringSimpleOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
start_positions: Optional[torch.Tensor] = None,
|
|
end_positions: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete when `use_cache` is removed in XLNetModel
|
|
) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
mems=mems,
|
|
perm_mask=perm_mask,
|
|
target_mapping=target_mapping,
|
|
token_type_ids=token_type_ids,
|
|
input_mask=input_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_mems=use_mems,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if not return_dict:
|
|
output = (start_logits, end_logits) + outputs[1:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return XLNetForQuestionAnsweringSimpleOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
mems=outputs.mems,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
XLNET_START_DOCSTRING,
|
|
)
|
|
class XLNetForQuestionAnswering(XLNetPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.start_n_top = config.start_n_top
|
|
self.end_n_top = config.end_n_top
|
|
|
|
self.transformer = XLNetModel(config)
|
|
self.start_logits = PoolerStartLogits(config)
|
|
self.end_logits = PoolerEndLogits(config)
|
|
self.answer_class = PoolerAnswerClass(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mems: Optional[torch.Tensor] = None,
|
|
perm_mask: Optional[torch.Tensor] = None,
|
|
target_mapping: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
input_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
start_positions: Optional[torch.Tensor] = None,
|
|
end_positions: Optional[torch.Tensor] = None,
|
|
is_impossible: Optional[torch.Tensor] = None,
|
|
cls_index: Optional[torch.Tensor] = None,
|
|
p_mask: Optional[torch.Tensor] = None,
|
|
use_mems: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs, # delete when `use_cache` is removed in XLNetModel
|
|
) -> Union[Tuple, XLNetForQuestionAnsweringOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels whether a question has an answer or no answer (SQuAD 2.0)
|
|
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the classification token to use as input for computing plausibility of the
|
|
answer.
|
|
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
|
|
masked. 0.0 mean token is not masked.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
|
|
>>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")
|
|
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
|
|
... 0
|
|
... ) # Batch size 1
|
|
>>> start_positions = torch.tensor([1])
|
|
>>> end_positions = torch.tensor([3])
|
|
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
|
|
|
>>> loss = outputs.loss
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
mems=mems,
|
|
perm_mask=perm_mask,
|
|
target_mapping=target_mapping,
|
|
token_type_ids=token_type_ids,
|
|
input_mask=input_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_mems=use_mems,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
|
|
|
|
outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
|
|
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, let's remove the dimension added by batch splitting
|
|
for x in (start_positions, end_positions, cls_index, is_impossible):
|
|
if x is not None and x.dim() > 1:
|
|
x.squeeze_(-1)
|
|
|
|
# during training, compute the end logits based on the ground truth of the start position
|
|
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if cls_index is not None and is_impossible is not None:
|
|
# Predict answerability from the representation of CLS and START
|
|
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
|
|
loss_fct_cls = nn.BCEWithLogitsLoss()
|
|
cls_loss = loss_fct_cls(cls_logits, is_impossible)
|
|
|
|
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
|
|
total_loss += cls_loss * 0.5
|
|
|
|
if not return_dict:
|
|
return (total_loss,) + transformer_outputs[1:]
|
|
else:
|
|
return XLNetForQuestionAnsweringOutput(
|
|
loss=total_loss,
|
|
mems=transformer_outputs.mems,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
else:
|
|
# during inference, compute the end logits based on beam search
|
|
bsz, slen, hsz = hidden_states.size()
|
|
start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
|
|
|
|
start_top_log_probs, start_top_index = torch.topk(
|
|
start_log_probs, self.start_n_top, dim=-1
|
|
) # shape (bsz, start_n_top)
|
|
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
|
|
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
|
|
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
|
|
|
|
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
|
|
start_states
|
|
) # shape (bsz, slen, start_n_top, hsz)
|
|
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
|
|
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
|
|
end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
|
|
|
|
end_top_log_probs, end_top_index = torch.topk(
|
|
end_log_probs, self.end_n_top, dim=1
|
|
) # shape (bsz, end_n_top, start_n_top)
|
|
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
|
|
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
|
|
|
|
start_states = torch.einsum(
|
|
"blh,bl->bh", hidden_states, start_log_probs
|
|
) # get the representation of START as weighted sum of hidden states
|
|
cls_logits = self.answer_class(
|
|
hidden_states, start_states=start_states, cls_index=cls_index
|
|
) # Shape (batch size,): one single `cls_logits` for each sample
|
|
|
|
if not return_dict:
|
|
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
|
|
return outputs + transformer_outputs[1:]
|
|
else:
|
|
return XLNetForQuestionAnsweringOutput(
|
|
start_top_log_probs=start_top_log_probs,
|
|
start_top_index=start_top_index,
|
|
end_top_log_probs=end_top_log_probs,
|
|
end_top_index=end_top_index,
|
|
cls_logits=cls_logits,
|
|
mems=transformer_outputs.mems,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|