ai-content-maker/.venv/Lib/site-packages/transformers/trainer_seq2seq.py

368 lines
17 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from copy import deepcopy
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import Dataset
from .generation.configuration_utils import GenerationConfig
from .integrations.deepspeed import is_deepspeed_zero3_enabled
from .trainer import Trainer
from .utils import logging
if TYPE_CHECKING:
from .data.data_collator import DataCollator
from .modeling_utils import PreTrainedModel
from .tokenization_utils_base import PreTrainedTokenizerBase
from .trainer_callback import TrainerCallback
from .trainer_utils import EvalPrediction, PredictionOutput
from .training_args import TrainingArguments
logger = logging.get_logger(__name__)
class Seq2SeqTrainer(Trainer):
def __init__(
self,
model: Union["PreTrainedModel", nn.Module] = None,
args: "TrainingArguments" = None,
data_collator: Optional["DataCollator"] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
model_init: Optional[Callable[[], "PreTrainedModel"]] = None,
compute_metrics: Optional[Callable[["EvalPrediction"], Dict]] = None,
callbacks: Optional[List["TrainerCallback"]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
):
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
model_init=model_init,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# Override self.model.generation_config if a GenerationConfig is specified in args.
# Priority: args.generation_config > model.generation_config > default GenerationConfig.
if self.args.generation_config is not None:
gen_config = self.load_generation_config(self.args.generation_config)
self.model.generation_config = gen_config
@staticmethod
def load_generation_config(gen_config_arg: Union[str, GenerationConfig]) -> GenerationConfig:
"""
Loads a `~generation.GenerationConfig` from the `Seq2SeqTrainingArguments.generation_config` arguments.
Args:
gen_config_arg (`str` or [`~generation.GenerationConfig`]):
`Seq2SeqTrainingArguments.generation_config` argument.
Returns:
A `~generation.GenerationConfig`.
"""
# GenerationConfig provided, nothing to do
if isinstance(gen_config_arg, GenerationConfig):
gen_config = deepcopy(gen_config_arg)
else:
# str or Path
pretrained_model_name = Path(gen_config_arg) if isinstance(gen_config_arg, str) else gen_config_arg
config_file_name = None
# Figuring if it is path pointing to a file, pointing to a directory or else a model id or URL
# This step is required in order to determine config_file_name
if pretrained_model_name.is_file():
config_file_name = pretrained_model_name.name
pretrained_model_name = pretrained_model_name.parent
# dir path
elif pretrained_model_name.is_dir():
pass
# model id or URL
else:
pretrained_model_name = gen_config_arg
gen_config = GenerationConfig.from_pretrained(pretrained_model_name, config_file_name)
# Strict validation to fail early. `GenerationConfig.save_pretrained()`, run at the end of training, throws
# an exception if there are warnings at validation time.
try:
with warnings.catch_warnings(record=True) as caught_warnings:
gen_config.validate()
if len(caught_warnings) > 0:
raise ValueError(str([w.message for w in caught_warnings]))
except ValueError as exc:
raise ValueError(
"The loaded generation config instance is invalid -- `GenerationConfig.validate()` throws warnings "
"and/or exceptions. Fix these issues to train your model.\n\nThrown during validation:\n" + str(exc)
)
return gen_config
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
**gen_kwargs,
) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
(pass it to the init `compute_metrics` argument).
You can also subclass and override this method to inject custom behavior.
Args:
eval_dataset (`Dataset`, *optional*):
Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
method.
ignore_keys (`List[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"eval_bleu" if the prefix is `"eval"` (default)
max_length (`int`, *optional*):
The maximum target length to use when predicting with the generate method.
num_beams (`int`, *optional*):
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
beam search.
gen_kwargs:
Additional `generate` specific kwargs.
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
dictionary also contains the epoch number which comes from the training state.
"""
gen_kwargs = gen_kwargs.copy()
# Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the
# training args
if (
gen_kwargs.get("max_length") is None
and gen_kwargs.get("max_new_tokens") is None
and self.args.generation_max_length is not None
):
gen_kwargs["max_length"] = self.args.generation_max_length
if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None:
gen_kwargs["num_beams"] = self.args.generation_num_beams
# We don't want to drop samples in general
self.gather_function = self.accelerator.gather
self._gen_kwargs = gen_kwargs
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
def predict(
self,
test_dataset: Dataset,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "test",
**gen_kwargs,
) -> "PredictionOutput":
"""
Run prediction and returns predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
will also return metrics, like in `evaluate()`.
Args:
test_dataset (`Dataset`):
Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the
`model.forward()` method are automatically removed. Has to implement the method `__len__`
ignore_keys (`List[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"eval_bleu" if the prefix is `"eval"` (default)
max_length (`int`, *optional*):
The maximum target length to use when predicting with the generate method.
num_beams (`int`, *optional*):
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
beam search.
gen_kwargs:
Additional `generate` specific kwargs.
<Tip>
If your predictions or labels have different sequence lengths (for instance because you're doing dynamic
padding in a token classification task) the predictions will be padded (on the right) to allow for
concatenation into one array. The padding index is -100.
</Tip>
Returns: *NamedTuple* A namedtuple with the following keys:
- predictions (`np.ndarray`): The predictions on `test_dataset`.
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
labels).
"""
gen_kwargs = gen_kwargs.copy()
# Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the
# training args
if (
gen_kwargs.get("max_length") is None
and gen_kwargs.get("max_new_tokens") is None
and self.args.generation_max_length is not None
):
gen_kwargs["max_length"] = self.args.generation_max_length
if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None:
gen_kwargs["num_beams"] = self.args.generation_num_beams
self.gather_function = self.accelerator.gather
self._gen_kwargs = gen_kwargs
return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
**gen_kwargs,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Perform an evaluation step on `model` using `inputs`.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to evaluate.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
prediction_loss_only (`bool`):
Whether or not to return the loss only.
gen_kwargs:
Additional `generate` specific kwargs.
Return:
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
labels (each being optional).
"""
if not self.args.predict_with_generate or prediction_loss_only:
return super().prediction_step(
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
has_labels = "labels" in inputs
inputs = self._prepare_inputs(inputs)
# Priority (handled in generate):
# non-`None` gen_kwargs > model.generation_config > default GenerationConfig()
if len(gen_kwargs) == 0 and hasattr(self, "_gen_kwargs"):
gen_kwargs = self._gen_kwargs.copy()
if "num_beams" in gen_kwargs and gen_kwargs["num_beams"] is None:
gen_kwargs.pop("num_beams")
if "max_length" in gen_kwargs and gen_kwargs["max_length"] is None:
gen_kwargs.pop("max_length")
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
gen_kwargs["synced_gpus"] = (
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
)
generation_inputs = inputs.copy()
# If the `decoder_input_ids` was created from `labels`, evict the former, so that the model can freely generate
# (otherwise, it would continue generating from the padded `decoder_input_ids`)
if (
"labels" in generation_inputs
and "decoder_input_ids" in generation_inputs
and generation_inputs["labels"].shape == generation_inputs["decoder_input_ids"].shape
):
generation_inputs = {
k: v for k, v in inputs.items() if k not in ("decoder_input_ids", "decoder_attention_mask")
}
generated_tokens = self.model.generate(**generation_inputs, **gen_kwargs)
# Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop
# TODO: remove this hack when the legacy code that initializes generation_config from a model config is
# removed in https://github.com/huggingface/transformers/blob/98d88b23f54e5a23e741833f1e973fdf600cc2c5/src/transformers/generation/utils.py#L1183
if self.model.generation_config._from_model_config:
self.model.generation_config._from_model_config = False
# Retrieves GenerationConfig from model.generation_config
gen_config = self.model.generation_config
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_config.max_length:
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_length)
elif gen_config.max_new_tokens is not None and generated_tokens.shape[-1] < gen_config.max_new_tokens + 1:
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_new_tokens + 1)
with torch.no_grad():
if has_labels:
with self.compute_loss_context_manager():
outputs = model(**inputs)
if self.label_smoother is not None:
loss = self.label_smoother(outputs, inputs["labels"]).mean().detach()
else:
loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach()
else:
loss = None
if self.args.prediction_loss_only:
return loss, None, None
if has_labels:
labels = inputs["labels"]
if labels.shape[-1] < gen_config.max_length:
labels = self._pad_tensors_to_max_len(labels, gen_config.max_length)
elif gen_config.max_new_tokens is not None and labels.shape[-1] < gen_config.max_new_tokens + 1:
labels = self._pad_tensors_to_max_len(labels, gen_config.max_new_tokens + 1)
else:
labels = None
return loss, generated_tokens, labels
def _pad_tensors_to_max_len(self, tensor, max_length):
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
# If PAD token is not defined at least EOS token has to be defined
pad_token_id = (
self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
)
else:
if self.model.config.pad_token_id is not None:
pad_token_id = self.model.config.pad_token_id
else:
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
padded_tensor = pad_token_id * torch.ones(
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
)
padded_tensor[:, : tensor.shape[-1]] = tensor
return padded_tensor