ai-content-maker/.venv/Lib/site-packages/Cython/Compiler/Buffer.py

750 lines
29 KiB
Python

from __future__ import absolute_import
from .Visitor import CythonTransform
from .ModuleNode import ModuleNode
from .Errors import CompileError
from .UtilityCode import CythonUtilityCode
from .Code import UtilityCode, TempitaUtilityCode
from . import Options
from . import Interpreter
from . import PyrexTypes
from . import Naming
from . import Symtab
def dedent(text, reindent=0):
from textwrap import dedent
text = dedent(text)
if reindent > 0:
indent = " " * reindent
text = '\n'.join([indent + x for x in text.split('\n')])
return text
class IntroduceBufferAuxiliaryVars(CythonTransform):
#
# Entry point
#
buffers_exists = False
using_memoryview = False
def __call__(self, node):
assert isinstance(node, ModuleNode)
self.max_ndim = 0
result = super(IntroduceBufferAuxiliaryVars, self).__call__(node)
if self.buffers_exists:
use_bufstruct_declare_code(node.scope)
use_py2_buffer_functions(node.scope)
return result
#
# Basic operations for transforms
#
def handle_scope(self, node, scope):
# For all buffers, insert extra variables in the scope.
# The variables are also accessible from the buffer_info
# on the buffer entry
scope_items = scope.entries.items()
bufvars = [entry for name, entry in scope_items if entry.type.is_buffer]
if len(bufvars) > 0:
bufvars.sort(key=lambda entry: entry.name)
self.buffers_exists = True
memviewslicevars = [entry for name, entry in scope_items if entry.type.is_memoryviewslice]
if len(memviewslicevars) > 0:
self.buffers_exists = True
for (name, entry) in scope_items:
if name == 'memoryview' and isinstance(entry.utility_code_definition, CythonUtilityCode):
self.using_memoryview = True
break
del scope_items
if isinstance(node, ModuleNode) and len(bufvars) > 0:
# for now...note that pos is wrong
raise CompileError(node.pos, "Buffer vars not allowed in module scope")
for entry in bufvars:
if entry.type.dtype.is_ptr:
raise CompileError(node.pos, "Buffers with pointer types not yet supported.")
name = entry.name
buftype = entry.type
if buftype.ndim > Options.buffer_max_dims:
raise CompileError(node.pos,
"Buffer ndims exceeds Options.buffer_max_dims = %d" % Options.buffer_max_dims)
if buftype.ndim > self.max_ndim:
self.max_ndim = buftype.ndim
# Declare auxiliary vars
def decvar(type, prefix):
cname = scope.mangle(prefix, name)
aux_var = scope.declare_var(name=None, cname=cname,
type=type, pos=node.pos)
if entry.is_arg:
aux_var.used = True # otherwise, NameNode will mark whether it is used
return aux_var
auxvars = ((PyrexTypes.c_pyx_buffer_nd_type, Naming.pybuffernd_prefix),
(PyrexTypes.c_pyx_buffer_type, Naming.pybufferstruct_prefix))
pybuffernd, rcbuffer = [decvar(type, prefix) for (type, prefix) in auxvars]
entry.buffer_aux = Symtab.BufferAux(pybuffernd, rcbuffer)
scope.buffer_entries = bufvars
self.scope = scope
def visit_ModuleNode(self, node):
self.handle_scope(node, node.scope)
self.visitchildren(node)
return node
def visit_FuncDefNode(self, node):
self.handle_scope(node, node.local_scope)
self.visitchildren(node)
return node
#
# Analysis
#
buffer_options = ("dtype", "ndim", "mode", "negative_indices", "cast") # ordered!
buffer_defaults = {"ndim": 1, "mode": "full", "negative_indices": True, "cast": False}
buffer_positional_options_count = 1 # anything beyond this needs keyword argument
ERR_BUF_OPTION_UNKNOWN = '"%s" is not a buffer option'
ERR_BUF_TOO_MANY = 'Too many buffer options'
ERR_BUF_DUP = '"%s" buffer option already supplied'
ERR_BUF_MISSING = '"%s" missing'
ERR_BUF_MODE = 'Only allowed buffer modes are: "c", "fortran", "full", "strided" (as a compile-time string)'
ERR_BUF_NDIM = 'ndim must be a non-negative integer'
ERR_BUF_DTYPE = 'dtype must be "object", numeric type or a struct'
ERR_BUF_BOOL = '"%s" must be a boolean'
def analyse_buffer_options(globalpos, env, posargs, dictargs, defaults=None, need_complete=True):
"""
Must be called during type analysis, as analyse is called
on the dtype argument.
posargs and dictargs should consist of a list and a dict
of tuples (value, pos). Defaults should be a dict of values.
Returns a dict containing all the options a buffer can have and
its value (with the positions stripped).
"""
if defaults is None:
defaults = buffer_defaults
posargs, dictargs = Interpreter.interpret_compiletime_options(
posargs, dictargs, type_env=env, type_args=(0, 'dtype'))
if len(posargs) > buffer_positional_options_count:
raise CompileError(posargs[-1][1], ERR_BUF_TOO_MANY)
options = {}
for name, (value, pos) in dictargs.items():
if name not in buffer_options:
raise CompileError(pos, ERR_BUF_OPTION_UNKNOWN % name)
options[name] = value
for name, (value, pos) in zip(buffer_options, posargs):
if name not in buffer_options:
raise CompileError(pos, ERR_BUF_OPTION_UNKNOWN % name)
if name in options:
raise CompileError(pos, ERR_BUF_DUP % name)
options[name] = value
# Check that they are all there and copy defaults
for name in buffer_options:
if name not in options:
try:
options[name] = defaults[name]
except KeyError:
if need_complete:
raise CompileError(globalpos, ERR_BUF_MISSING % name)
dtype = options.get("dtype")
if dtype and dtype.is_extension_type:
raise CompileError(globalpos, ERR_BUF_DTYPE)
ndim = options.get("ndim")
if ndim and (not isinstance(ndim, int) or ndim < 0):
raise CompileError(globalpos, ERR_BUF_NDIM)
mode = options.get("mode")
if mode and not (mode in ('full', 'strided', 'c', 'fortran')):
raise CompileError(globalpos, ERR_BUF_MODE)
def assert_bool(name):
x = options.get(name)
if not isinstance(x, bool):
raise CompileError(globalpos, ERR_BUF_BOOL % name)
assert_bool('negative_indices')
assert_bool('cast')
return options
#
# Code generation
#
class BufferEntry(object):
def __init__(self, entry):
self.entry = entry
self.type = entry.type
self.cname = entry.buffer_aux.buflocal_nd_var.cname
self.buf_ptr = "%s.rcbuffer->pybuffer.buf" % self.cname
self.buf_ptr_type = entry.type.buffer_ptr_type
self.init_attributes()
def init_attributes(self):
self.shape = self.get_buf_shapevars()
self.strides = self.get_buf_stridevars()
self.suboffsets = self.get_buf_suboffsetvars()
def get_buf_suboffsetvars(self):
return self._for_all_ndim("%s.diminfo[%d].suboffsets")
def get_buf_stridevars(self):
return self._for_all_ndim("%s.diminfo[%d].strides")
def get_buf_shapevars(self):
return self._for_all_ndim("%s.diminfo[%d].shape")
def _for_all_ndim(self, s):
return [s % (self.cname, i) for i in range(self.type.ndim)]
def generate_buffer_lookup_code(self, code, index_cnames):
# Create buffer lookup and return it
# This is done via utility macros/inline functions, which vary
# according to the access mode used.
params = []
nd = self.type.ndim
mode = self.type.mode
if mode == 'full':
for i, s, o in zip(index_cnames,
self.get_buf_stridevars(),
self.get_buf_suboffsetvars()):
params.append(i)
params.append(s)
params.append(o)
funcname = "__Pyx_BufPtrFull%dd" % nd
funcgen = buf_lookup_full_code
else:
if mode == 'strided':
funcname = "__Pyx_BufPtrStrided%dd" % nd
funcgen = buf_lookup_strided_code
elif mode == 'c':
funcname = "__Pyx_BufPtrCContig%dd" % nd
funcgen = buf_lookup_c_code
elif mode == 'fortran':
funcname = "__Pyx_BufPtrFortranContig%dd" % nd
funcgen = buf_lookup_fortran_code
else:
assert False
for i, s in zip(index_cnames, self.get_buf_stridevars()):
params.append(i)
params.append(s)
# Make sure the utility code is available
if funcname not in code.globalstate.utility_codes:
code.globalstate.utility_codes.add(funcname)
protocode = code.globalstate['utility_code_proto']
defcode = code.globalstate['utility_code_def']
funcgen(protocode, defcode, name=funcname, nd=nd)
buf_ptr_type_code = self.buf_ptr_type.empty_declaration_code()
ptrcode = "%s(%s, %s, %s)" % (funcname, buf_ptr_type_code, self.buf_ptr,
", ".join(params))
return ptrcode
def get_flags(buffer_aux, buffer_type):
flags = 'PyBUF_FORMAT'
mode = buffer_type.mode
if mode == 'full':
flags += '| PyBUF_INDIRECT'
elif mode == 'strided':
flags += '| PyBUF_STRIDES'
elif mode == 'c':
flags += '| PyBUF_C_CONTIGUOUS'
elif mode == 'fortran':
flags += '| PyBUF_F_CONTIGUOUS'
else:
assert False
if buffer_aux.writable_needed: flags += "| PyBUF_WRITABLE"
return flags
def used_buffer_aux_vars(entry):
buffer_aux = entry.buffer_aux
buffer_aux.buflocal_nd_var.used = True
buffer_aux.rcbuf_var.used = True
def put_unpack_buffer_aux_into_scope(buf_entry, code):
# Generate code to copy the needed struct info into local
# variables.
buffer_aux, mode = buf_entry.buffer_aux, buf_entry.type.mode
pybuffernd_struct = buffer_aux.buflocal_nd_var.cname
fldnames = ['strides', 'shape']
if mode == 'full':
fldnames.append('suboffsets')
ln = []
for i in range(buf_entry.type.ndim):
for fldname in fldnames:
ln.append("%s.diminfo[%d].%s = %s.rcbuffer->pybuffer.%s[%d];" % (
pybuffernd_struct, i, fldname,
pybuffernd_struct, fldname, i,
))
code.putln(' '.join(ln))
def put_init_vars(entry, code):
bufaux = entry.buffer_aux
pybuffernd_struct = bufaux.buflocal_nd_var.cname
pybuffer_struct = bufaux.rcbuf_var.cname
# init pybuffer_struct
code.putln("%s.pybuffer.buf = NULL;" % pybuffer_struct)
code.putln("%s.refcount = 0;" % pybuffer_struct)
# init the buffer object
# code.put_init_var_to_py_none(entry)
# init the pybuffernd_struct
code.putln("%s.data = NULL;" % pybuffernd_struct)
code.putln("%s.rcbuffer = &%s;" % (pybuffernd_struct, pybuffer_struct))
def put_acquire_arg_buffer(entry, code, pos):
buffer_aux = entry.buffer_aux
getbuffer = get_getbuffer_call(code, entry.cname, buffer_aux, entry.type)
# Acquire any new buffer
code.putln("{")
code.putln("__Pyx_BufFmt_StackElem __pyx_stack[%d];" % entry.type.dtype.struct_nesting_depth())
code.putln(code.error_goto_if("%s == -1" % getbuffer, pos))
code.putln("}")
# An exception raised in arg parsing cannot be caught, so no
# need to care about the buffer then.
put_unpack_buffer_aux_into_scope(entry, code)
def put_release_buffer_code(code, entry):
code.globalstate.use_utility_code(acquire_utility_code)
code.putln("__Pyx_SafeReleaseBuffer(&%s.rcbuffer->pybuffer);" % entry.buffer_aux.buflocal_nd_var.cname)
def get_getbuffer_call(code, obj_cname, buffer_aux, buffer_type):
ndim = buffer_type.ndim
cast = int(buffer_type.cast)
flags = get_flags(buffer_aux, buffer_type)
pybuffernd_struct = buffer_aux.buflocal_nd_var.cname
dtype_typeinfo = get_type_information_cname(code, buffer_type.dtype)
code.globalstate.use_utility_code(acquire_utility_code)
return ("__Pyx_GetBufferAndValidate(&%(pybuffernd_struct)s.rcbuffer->pybuffer, "
"(PyObject*)%(obj_cname)s, &%(dtype_typeinfo)s, %(flags)s, %(ndim)d, "
"%(cast)d, __pyx_stack)" % locals())
def put_assign_to_buffer(lhs_cname, rhs_cname, buf_entry,
is_initialized, pos, code):
"""
Generate code for reassigning a buffer variables. This only deals with getting
the buffer auxiliary structure and variables set up correctly, the assignment
itself and refcounting is the responsibility of the caller.
However, the assignment operation may throw an exception so that the reassignment
never happens.
Depending on the circumstances there are two possible outcomes:
- Old buffer released, new acquired, rhs assigned to lhs
- Old buffer released, new acquired which fails, reaqcuire old lhs buffer
(which may or may not succeed).
"""
buffer_aux, buffer_type = buf_entry.buffer_aux, buf_entry.type
pybuffernd_struct = buffer_aux.buflocal_nd_var.cname
flags = get_flags(buffer_aux, buffer_type)
code.putln("{") # Set up necessary stack for getbuffer
code.putln("__Pyx_BufFmt_StackElem __pyx_stack[%d];" % buffer_type.dtype.struct_nesting_depth())
getbuffer = get_getbuffer_call(code, "%s", buffer_aux, buffer_type) # fill in object below
if is_initialized:
# Release any existing buffer
code.putln('__Pyx_SafeReleaseBuffer(&%s.rcbuffer->pybuffer);' % pybuffernd_struct)
# Acquire
retcode_cname = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
code.putln("%s = %s;" % (retcode_cname, getbuffer % rhs_cname))
code.putln('if (%s) {' % (code.unlikely("%s < 0" % retcode_cname)))
# If acquisition failed, attempt to reacquire the old buffer
# before raising the exception. A failure of reacquisition
# will cause the reacquisition exception to be reported, one
# can consider working around this later.
exc_temps = tuple(code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=False)
for _ in range(3))
code.putln('PyErr_Fetch(&%s, &%s, &%s);' % exc_temps)
code.putln('if (%s) {' % code.unlikely("%s == -1" % (getbuffer % lhs_cname)))
code.putln('Py_XDECREF(%s); Py_XDECREF(%s); Py_XDECREF(%s);' % exc_temps) # Do not refnanny these!
code.globalstate.use_utility_code(raise_buffer_fallback_code)
code.putln('__Pyx_RaiseBufferFallbackError();')
code.putln('} else {')
code.putln('PyErr_Restore(%s, %s, %s);' % exc_temps)
code.putln('}')
code.putln('%s = %s = %s = 0;' % exc_temps)
for t in exc_temps:
code.funcstate.release_temp(t)
code.putln('}')
# Unpack indices
put_unpack_buffer_aux_into_scope(buf_entry, code)
code.putln(code.error_goto_if_neg(retcode_cname, pos))
code.funcstate.release_temp(retcode_cname)
else:
# Our entry had no previous value, so set to None when acquisition fails.
# In this case, auxiliary vars should be set up right in initialization to a zero-buffer,
# so it suffices to set the buf field to NULL.
code.putln('if (%s) {' % code.unlikely("%s == -1" % (getbuffer % rhs_cname)))
code.putln('%s = %s; __Pyx_INCREF(Py_None); %s.rcbuffer->pybuffer.buf = NULL;' %
(lhs_cname,
PyrexTypes.typecast(buffer_type, PyrexTypes.py_object_type, "Py_None"),
pybuffernd_struct))
code.putln(code.error_goto(pos))
code.put('} else {')
# Unpack indices
put_unpack_buffer_aux_into_scope(buf_entry, code)
code.putln('}')
code.putln("}") # Release stack
def put_buffer_lookup_code(entry, index_signeds, index_cnames, directives,
pos, code, negative_indices, in_nogil_context):
"""
Generates code to process indices and calculate an offset into
a buffer. Returns a C string which gives a pointer which can be
read from or written to at will (it is an expression so caller should
store it in a temporary if it is used more than once).
As the bounds checking can have any number of combinations of unsigned
arguments, smart optimizations etc. we insert it directly in the function
body. The lookup however is delegated to a inline function that is instantiated
once per ndim (lookup with suboffsets tend to get quite complicated).
entry is a BufferEntry
"""
negative_indices = directives['wraparound'] and negative_indices
if directives['boundscheck']:
# Check bounds and fix negative indices.
# We allocate a temporary which is initialized to -1, meaning OK (!).
# If an error occurs, the temp is set to the index dimension the
# error is occurring at.
failed_dim_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
code.putln("%s = -1;" % failed_dim_temp)
for dim, (signed, cname, shape) in enumerate(zip(index_signeds, index_cnames, entry.get_buf_shapevars())):
if signed != 0:
# not unsigned, deal with negative index
code.putln("if (%s < 0) {" % cname)
if negative_indices:
code.putln("%s += %s;" % (cname, shape))
code.putln("if (%s) %s = %d;" % (
code.unlikely("%s < 0" % cname),
failed_dim_temp, dim))
else:
code.putln("%s = %d;" % (failed_dim_temp, dim))
code.put("} else ")
# check bounds in positive direction
if signed != 0:
cast = ""
else:
cast = "(size_t)"
code.putln("if (%s) %s = %d;" % (
code.unlikely("%s >= %s%s" % (cname, cast, shape)),
failed_dim_temp, dim))
if in_nogil_context:
code.globalstate.use_utility_code(raise_indexerror_nogil)
func = '__Pyx_RaiseBufferIndexErrorNogil'
else:
code.globalstate.use_utility_code(raise_indexerror_code)
func = '__Pyx_RaiseBufferIndexError'
code.putln("if (%s) {" % code.unlikely("%s != -1" % failed_dim_temp))
code.putln('%s(%s);' % (func, failed_dim_temp))
code.putln(code.error_goto(pos))
code.putln('}')
code.funcstate.release_temp(failed_dim_temp)
elif negative_indices:
# Only fix negative indices.
for signed, cname, shape in zip(index_signeds, index_cnames, entry.get_buf_shapevars()):
if signed != 0:
code.putln("if (%s < 0) %s += %s;" % (cname, cname, shape))
return entry.generate_buffer_lookup_code(code, index_cnames)
def use_bufstruct_declare_code(env):
env.use_utility_code(buffer_struct_declare_code)
def buf_lookup_full_code(proto, defin, name, nd):
"""
Generates a buffer lookup function for the right number
of dimensions. The function gives back a void* at the right location.
"""
# _i_ndex, _s_tride, sub_o_ffset
macroargs = ", ".join(["i%d, s%d, o%d" % (i, i, i) for i in range(nd)])
proto.putln("#define %s(type, buf, %s) (type)(%s_imp(buf, %s))" % (name, macroargs, name, macroargs))
funcargs = ", ".join(["Py_ssize_t i%d, Py_ssize_t s%d, Py_ssize_t o%d" % (i, i, i) for i in range(nd)])
proto.putln("static CYTHON_INLINE void* %s_imp(void* buf, %s);" % (name, funcargs))
defin.putln(dedent("""
static CYTHON_INLINE void* %s_imp(void* buf, %s) {
char* ptr = (char*)buf;
""") % (name, funcargs) + "".join([dedent("""\
ptr += s%d * i%d;
if (o%d >= 0) ptr = *((char**)ptr) + o%d;
""") % (i, i, i, i) for i in range(nd)]
) + "\nreturn ptr;\n}")
def buf_lookup_strided_code(proto, defin, name, nd):
"""
Generates a buffer lookup function for the right number
of dimensions. The function gives back a void* at the right location.
"""
# _i_ndex, _s_tride
args = ", ".join(["i%d, s%d" % (i, i) for i in range(nd)])
offset = " + ".join(["i%d * s%d" % (i, i) for i in range(nd)])
proto.putln("#define %s(type, buf, %s) (type)((char*)buf + %s)" % (name, args, offset))
def buf_lookup_c_code(proto, defin, name, nd):
"""
Similar to strided lookup, but can assume that the last dimension
doesn't need a multiplication as long as.
Still we keep the same signature for now.
"""
if nd == 1:
proto.putln("#define %s(type, buf, i0, s0) ((type)buf + i0)" % name)
else:
args = ", ".join(["i%d, s%d" % (i, i) for i in range(nd)])
offset = " + ".join(["i%d * s%d" % (i, i) for i in range(nd - 1)])
proto.putln("#define %s(type, buf, %s) ((type)((char*)buf + %s) + i%d)" % (name, args, offset, nd - 1))
def buf_lookup_fortran_code(proto, defin, name, nd):
"""
Like C lookup, but the first index is optimized instead.
"""
if nd == 1:
proto.putln("#define %s(type, buf, i0, s0) ((type)buf + i0)" % name)
else:
args = ", ".join(["i%d, s%d" % (i, i) for i in range(nd)])
offset = " + ".join(["i%d * s%d" % (i, i) for i in range(1, nd)])
proto.putln("#define %s(type, buf, %s) ((type)((char*)buf + %s) + i%d)" % (name, args, offset, 0))
def use_py2_buffer_functions(env):
env.use_utility_code(GetAndReleaseBufferUtilityCode())
class GetAndReleaseBufferUtilityCode(object):
# Emulation of PyObject_GetBuffer and PyBuffer_Release for Python 2.
# For >= 2.6 we do double mode -- use the new buffer interface on objects
# which has the right tp_flags set, but emulation otherwise.
requires = None
is_cython_utility = False
def __init__(self):
pass
def __eq__(self, other):
return isinstance(other, GetAndReleaseBufferUtilityCode)
def __hash__(self):
return 24342342
def get_tree(self, **kwargs): pass
def put_code(self, output):
code = output['utility_code_def']
proto_code = output['utility_code_proto']
env = output.module_node.scope
cython_scope = env.context.cython_scope
# Search all types for __getbuffer__ overloads
types = []
visited_scopes = set()
def find_buffer_types(scope):
if scope in visited_scopes:
return
visited_scopes.add(scope)
for m in scope.cimported_modules:
find_buffer_types(m)
for e in scope.type_entries:
if isinstance(e.utility_code_definition, CythonUtilityCode):
continue
t = e.type
if t.is_extension_type:
if scope is cython_scope and not e.used:
continue
release = get = None
for x in t.scope.pyfunc_entries:
if x.name == u"__getbuffer__": get = x.func_cname
elif x.name == u"__releasebuffer__": release = x.func_cname
if get:
types.append((t.typeptr_cname, get, release))
find_buffer_types(env)
util_code = TempitaUtilityCode.load(
"GetAndReleaseBuffer", from_file="Buffer.c",
context=dict(types=types))
proto = util_code.format_code(util_code.proto)
impl = util_code.format_code(
util_code.inject_string_constants(util_code.impl, output)[1])
proto_code.putln(proto)
code.putln(impl)
def mangle_dtype_name(dtype):
# Use prefixes to separate user defined types from builtins
# (consider "typedef float unsigned_int")
if dtype.is_pyobject:
return "object"
elif dtype.is_ptr:
return "ptr"
else:
if dtype.is_typedef or dtype.is_struct_or_union:
prefix = "nn_"
else:
prefix = ""
return prefix + dtype.specialization_name()
def get_type_information_cname(code, dtype, maxdepth=None):
"""
Output the run-time type information (__Pyx_TypeInfo) for given dtype,
and return the name of the type info struct.
Structs with two floats of the same size are encoded as complex numbers.
One can separate between complex numbers declared as struct or with native
encoding by inspecting to see if the fields field of the type is
filled in.
"""
namesuffix = mangle_dtype_name(dtype)
name = "__Pyx_TypeInfo_%s" % namesuffix
structinfo_name = "__Pyx_StructFields_%s" % namesuffix
if dtype.is_error: return "<error>"
# It's critical that walking the type info doesn't use more stack
# depth than dtype.struct_nesting_depth() returns, so use an assertion for this
if maxdepth is None: maxdepth = dtype.struct_nesting_depth()
if maxdepth <= 0:
assert False
if name not in code.globalstate.utility_codes:
code.globalstate.utility_codes.add(name)
typecode = code.globalstate['typeinfo']
arraysizes = []
if dtype.is_array:
while dtype.is_array:
arraysizes.append(dtype.size)
dtype = dtype.base_type
complex_possible = dtype.is_struct_or_union and dtype.can_be_complex()
declcode = dtype.empty_declaration_code()
if dtype.is_simple_buffer_dtype():
structinfo_name = "NULL"
elif dtype.is_struct:
struct_scope = dtype.scope
if dtype.is_cv_qualified:
struct_scope = struct_scope.base_type_scope
# Must pre-call all used types in order not to recurse during utility code writing.
fields = struct_scope.var_entries
assert len(fields) > 0
types = [get_type_information_cname(code, f.type, maxdepth - 1)
for f in fields]
typecode.putln("static __Pyx_StructField %s[] = {" % structinfo_name, safe=True)
if dtype.is_cv_qualified:
# roughly speaking, remove "const" from struct_type
struct_type = dtype.cv_base_type.empty_declaration_code()
else:
struct_type = dtype.empty_declaration_code()
for f, typeinfo in zip(fields, types):
typecode.putln(' {&%s, "%s", offsetof(%s, %s)},' %
(typeinfo, f.name, struct_type, f.cname), safe=True)
typecode.putln(' {NULL, NULL, 0}', safe=True)
typecode.putln("};", safe=True)
else:
assert False
rep = str(dtype)
flags = "0"
is_unsigned = "0"
if dtype is PyrexTypes.c_char_type:
is_unsigned = "__PYX_IS_UNSIGNED(%s)" % declcode
typegroup = "'H'"
elif dtype.is_int:
is_unsigned = "__PYX_IS_UNSIGNED(%s)" % declcode
typegroup = "%s ? 'U' : 'I'" % is_unsigned
elif complex_possible or dtype.is_complex:
typegroup = "'C'"
elif dtype.is_float:
typegroup = "'R'"
elif dtype.is_struct:
typegroup = "'S'"
if dtype.packed:
flags = "__PYX_BUF_FLAGS_PACKED_STRUCT"
elif dtype.is_pyobject:
typegroup = "'O'"
else:
assert False, dtype
typeinfo = ('static __Pyx_TypeInfo %s = '
'{ "%s", %s, sizeof(%s), { %s }, %s, %s, %s, %s };')
tup = (name, rep, structinfo_name, declcode,
', '.join([str(x) for x in arraysizes]) or '0', len(arraysizes),
typegroup, is_unsigned, flags)
typecode.putln(typeinfo % tup, safe=True)
return name
def load_buffer_utility(util_code_name, context=None, **kwargs):
if context is None:
return UtilityCode.load(util_code_name, "Buffer.c", **kwargs)
else:
return TempitaUtilityCode.load(util_code_name, "Buffer.c", context=context, **kwargs)
context = dict(max_dims=Options.buffer_max_dims)
buffer_struct_declare_code = load_buffer_utility("BufferStructDeclare", context=context)
buffer_formats_declare_code = load_buffer_utility("BufferFormatStructs")
# Utility function to set the right exception
# The caller should immediately goto_error
raise_indexerror_code = load_buffer_utility("BufferIndexError")
raise_indexerror_nogil = load_buffer_utility("BufferIndexErrorNogil")
raise_buffer_fallback_code = load_buffer_utility("BufferFallbackError")
acquire_utility_code = load_buffer_utility("BufferGetAndValidate", context=context)
buffer_format_check_code = load_buffer_utility("BufferFormatCheck", context=context)
# See utility code BufferFormatFromTypeInfo
_typeinfo_to_format_code = load_buffer_utility("TypeInfoToFormat")