ai-content-maker/.venv/Lib/site-packages/Cython/Utility/CppSupport.cpp

134 lines
4.8 KiB
C++

/////////////// CppExceptionConversion.proto ///////////////
#ifndef __Pyx_CppExn2PyErr
#include <new>
#include <typeinfo>
#include <stdexcept>
#include <ios>
static void __Pyx_CppExn2PyErr() {
// Catch a handful of different errors here and turn them into the
// equivalent Python errors.
try {
if (PyErr_Occurred())
; // let the latest Python exn pass through and ignore the current one
else
throw;
} catch (const std::bad_alloc& exn) {
PyErr_SetString(PyExc_MemoryError, exn.what());
} catch (const std::bad_cast& exn) {
PyErr_SetString(PyExc_TypeError, exn.what());
} catch (const std::bad_typeid& exn) {
PyErr_SetString(PyExc_TypeError, exn.what());
} catch (const std::domain_error& exn) {
PyErr_SetString(PyExc_ValueError, exn.what());
} catch (const std::invalid_argument& exn) {
PyErr_SetString(PyExc_ValueError, exn.what());
} catch (const std::ios_base::failure& exn) {
// Unfortunately, in standard C++ we have no way of distinguishing EOF
// from other errors here; be careful with the exception mask
PyErr_SetString(PyExc_IOError, exn.what());
} catch (const std::out_of_range& exn) {
// Change out_of_range to IndexError
PyErr_SetString(PyExc_IndexError, exn.what());
} catch (const std::overflow_error& exn) {
PyErr_SetString(PyExc_OverflowError, exn.what());
} catch (const std::range_error& exn) {
PyErr_SetString(PyExc_ArithmeticError, exn.what());
} catch (const std::underflow_error& exn) {
PyErr_SetString(PyExc_ArithmeticError, exn.what());
} catch (const std::exception& exn) {
PyErr_SetString(PyExc_RuntimeError, exn.what());
}
catch (...)
{
PyErr_SetString(PyExc_RuntimeError, "Unknown exception");
}
}
#endif
/////////////// PythranConversion.proto ///////////////
template <class T>
auto __Pyx_pythran_to_python(T &&value) -> decltype(to_python(
typename pythonic::returnable<typename std::remove_cv<typename std::remove_reference<T>::type>::type>::type{std::forward<T>(value)}))
{
using returnable_type = typename pythonic::returnable<typename std::remove_cv<typename std::remove_reference<T>::type>::type>::type;
return to_python(returnable_type{std::forward<T>(value)});
}
#define __Pyx_PythranShapeAccessor(x) (pythonic::builtins::getattr(pythonic::types::attr::SHAPE{}, x))
////////////// MoveIfSupported.proto //////////////////
#if CYTHON_USE_CPP_STD_MOVE
#include <utility>
#define __PYX_STD_MOVE_IF_SUPPORTED(x) std::move(x)
#else
#define __PYX_STD_MOVE_IF_SUPPORTED(x) x
#endif
////////////// EnumClassDecl.proto //////////////////
//@proto_block: utility_code_proto_before_types
#if defined (_MSC_VER)
#if _MSC_VER >= 1910
#define __PYX_ENUM_CLASS_DECL enum
#else
#define __PYX_ENUM_CLASS_DECL
#endif
#else
#define __PYX_ENUM_CLASS_DECL enum
#endif
////////////// OptionalLocals.proto ////////////////
//@proto_block: utility_code_proto_before_types
#include <utility>
#if defined(CYTHON_USE_BOOST_OPTIONAL)
// fallback mode - std::optional is preferred but this gives
// people with a less up-to-date compiler a chance
#include <boost/optional.hpp>
#define __Pyx_Optional_BaseType boost::optional
#else
#include <optional>
// since std::optional is a C++17 features, a templated using declaration should be safe
// (although it could be replaced with a define)
template <typename T>
using __Pyx_Optional_BaseType = std::optional<T>;
#endif
// This class reuses as much of the implementation of std::optional as possible.
// The only place it differs significantly is the assignment operators, which use
// "emplace" (thus requiring move/copy constructors, but not move/copy
// assignment operators). This is preferred because it lets us work with assignable
// types (for example those with const members)
template <typename T>
class __Pyx_Optional_Type : private __Pyx_Optional_BaseType<T> {
public:
using __Pyx_Optional_BaseType<T>::__Pyx_Optional_BaseType;
using __Pyx_Optional_BaseType<T>::has_value;
using __Pyx_Optional_BaseType<T>::operator*;
using __Pyx_Optional_BaseType<T>::operator->;
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1600)
__Pyx_Optional_Type& operator=(const __Pyx_Optional_Type& rhs) {
this->emplace(*rhs);
return *this;
}
__Pyx_Optional_Type& operator=(__Pyx_Optional_Type&& rhs) {
this->emplace(std::move(*rhs));
return *this;
}
template <typename U=T>
__Pyx_Optional_Type& operator=(U&& rhs) {
this->emplace(std::forward<U>(rhs));
return *this;
}
#else
// Note - the "cpp_locals" feature is designed to require C++14.
// This pre-c++11 fallback is largely untested, and definitely won't work
// in all the cases that the more modern version does
using __Pyx_Optional_BaseType<T>::operator=; // the chances are emplace can't work...
#endif
};