97 lines
3.1 KiB
Python
97 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import argparse
|
|
import glob
|
|
import os
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
# from TTS.utils.io import load_config
|
|
from TTS.config import load_config
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
|
|
def main():
|
|
"""Run preprocessing process."""
|
|
parser = argparse.ArgumentParser(description="Compute mean and variance of spectrogtram features.")
|
|
parser.add_argument("config_path", type=str, help="TTS config file path to define audio processin parameters.")
|
|
parser.add_argument("out_path", type=str, help="save path (directory and filename).")
|
|
parser.add_argument(
|
|
"--data_path",
|
|
type=str,
|
|
required=False,
|
|
help="folder including the target set of wavs overriding dataset config.",
|
|
)
|
|
args, overrides = parser.parse_known_args()
|
|
|
|
CONFIG = load_config(args.config_path)
|
|
CONFIG.parse_known_args(overrides, relaxed_parser=True)
|
|
|
|
# load config
|
|
CONFIG.audio.signal_norm = False # do not apply earlier normalization
|
|
CONFIG.audio.stats_path = None # discard pre-defined stats
|
|
|
|
# load audio processor
|
|
ap = AudioProcessor(**CONFIG.audio.to_dict())
|
|
|
|
# load the meta data of target dataset
|
|
if args.data_path:
|
|
dataset_items = glob.glob(os.path.join(args.data_path, "**", "*.wav"), recursive=True)
|
|
else:
|
|
dataset_items = load_tts_samples(CONFIG.datasets)[0] # take only train data
|
|
print(f" > There are {len(dataset_items)} files.")
|
|
|
|
mel_sum = 0
|
|
mel_square_sum = 0
|
|
linear_sum = 0
|
|
linear_square_sum = 0
|
|
N = 0
|
|
for item in tqdm(dataset_items):
|
|
# compute features
|
|
wav = ap.load_wav(item if isinstance(item, str) else item["audio_file"])
|
|
linear = ap.spectrogram(wav)
|
|
mel = ap.melspectrogram(wav)
|
|
|
|
# compute stats
|
|
N += mel.shape[1]
|
|
mel_sum += mel.sum(1)
|
|
linear_sum += linear.sum(1)
|
|
mel_square_sum += (mel**2).sum(axis=1)
|
|
linear_square_sum += (linear**2).sum(axis=1)
|
|
|
|
mel_mean = mel_sum / N
|
|
mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2)
|
|
linear_mean = linear_sum / N
|
|
linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2)
|
|
|
|
output_file_path = args.out_path
|
|
stats = {}
|
|
stats["mel_mean"] = mel_mean
|
|
stats["mel_std"] = mel_scale
|
|
stats["linear_mean"] = linear_mean
|
|
stats["linear_std"] = linear_scale
|
|
|
|
print(f" > Avg mel spec mean: {mel_mean.mean()}")
|
|
print(f" > Avg mel spec scale: {mel_scale.mean()}")
|
|
print(f" > Avg linear spec mean: {linear_mean.mean()}")
|
|
print(f" > Avg linear spec scale: {linear_scale.mean()}")
|
|
|
|
# set default config values for mean-var scaling
|
|
CONFIG.audio.stats_path = output_file_path
|
|
CONFIG.audio.signal_norm = True
|
|
# remove redundant values
|
|
del CONFIG.audio.max_norm
|
|
del CONFIG.audio.min_level_db
|
|
del CONFIG.audio.symmetric_norm
|
|
del CONFIG.audio.clip_norm
|
|
stats["audio_config"] = CONFIG.audio.to_dict()
|
|
np.save(output_file_path, stats, allow_pickle=True)
|
|
print(f" > stats saved to {output_file_path}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|