ai-content-maker/.venv/Lib/site-packages/TTS/tts/utils/speakers.py

223 lines
9.4 KiB
Python

import json
import os
from typing import Any, Dict, List, Union
import fsspec
import numpy as np
import torch
from coqpit import Coqpit
from TTS.config import get_from_config_or_model_args_with_default
from TTS.tts.utils.managers import EmbeddingManager
class SpeakerManager(EmbeddingManager):
"""Manage the speakers for multi-speaker 🐸TTS models. Load a datafile and parse the information
in a way that can be queried by speaker or clip.
There are 3 different scenarios considered:
1. Models using speaker embedding layers. The datafile only maps speaker names to ids used by the embedding layer.
2. Models using d-vectors. The datafile includes a dictionary in the following format.
::
{
'clip_name.wav':{
'name': 'speakerA',
'embedding'[<d_vector_values>]
},
...
}
3. Computing the d-vectors by the speaker encoder. It loads the speaker encoder model and
computes the d-vectors for a given clip or speaker.
Args:
d_vectors_file_path (str, optional): Path to the metafile including x vectors. Defaults to "".
speaker_id_file_path (str, optional): Path to the metafile that maps speaker names to ids used by
TTS models. Defaults to "".
encoder_model_path (str, optional): Path to the speaker encoder model file. Defaults to "".
encoder_config_path (str, optional): Path to the spealer encoder config file. Defaults to "".
Examples:
>>> # load audio processor and speaker encoder
>>> ap = AudioProcessor(**config.audio)
>>> manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path)
>>> # load a sample audio and compute embedding
>>> waveform = ap.load_wav(sample_wav_path)
>>> mel = ap.melspectrogram(waveform)
>>> d_vector = manager.compute_embeddings(mel.T)
"""
def __init__(
self,
data_items: List[List[Any]] = None,
d_vectors_file_path: str = "",
speaker_id_file_path: str = "",
encoder_model_path: str = "",
encoder_config_path: str = "",
use_cuda: bool = False,
):
super().__init__(
embedding_file_path=d_vectors_file_path,
id_file_path=speaker_id_file_path,
encoder_model_path=encoder_model_path,
encoder_config_path=encoder_config_path,
use_cuda=use_cuda,
)
if data_items:
self.set_ids_from_data(data_items, parse_key="speaker_name")
@property
def num_speakers(self):
return len(self.name_to_id)
@property
def speaker_names(self):
return list(self.name_to_id.keys())
def get_speakers(self) -> List:
return self.name_to_id
@staticmethod
def init_from_config(config: "Coqpit", samples: Union[List[List], List[Dict]] = None) -> "SpeakerManager":
"""Initialize a speaker manager from config
Args:
config (Coqpit): Config object.
samples (Union[List[List], List[Dict]], optional): List of data samples to parse out the speaker names.
Defaults to None.
Returns:
SpeakerEncoder: Speaker encoder object.
"""
speaker_manager = None
if get_from_config_or_model_args_with_default(config, "use_speaker_embedding", False):
if samples:
speaker_manager = SpeakerManager(data_items=samples)
if get_from_config_or_model_args_with_default(config, "speaker_file", None):
speaker_manager = SpeakerManager(
speaker_id_file_path=get_from_config_or_model_args_with_default(config, "speaker_file", None)
)
if get_from_config_or_model_args_with_default(config, "speakers_file", None):
speaker_manager = SpeakerManager(
speaker_id_file_path=get_from_config_or_model_args_with_default(config, "speakers_file", None)
)
if get_from_config_or_model_args_with_default(config, "use_d_vector_file", False):
speaker_manager = SpeakerManager()
if get_from_config_or_model_args_with_default(config, "d_vector_file", None):
speaker_manager = SpeakerManager(
d_vectors_file_path=get_from_config_or_model_args_with_default(config, "d_vector_file", None)
)
return speaker_manager
def _set_file_path(path):
"""Find the speakers.json under the given path or the above it.
Intended to band aid the different paths returned in restored and continued training."""
path_restore = os.path.join(os.path.dirname(path), "speakers.json")
path_continue = os.path.join(path, "speakers.json")
fs = fsspec.get_mapper(path).fs
if fs.exists(path_restore):
return path_restore
if fs.exists(path_continue):
return path_continue
raise FileNotFoundError(f" [!] `speakers.json` not found in {path}")
def load_speaker_mapping(out_path):
"""Loads speaker mapping if already present."""
if os.path.splitext(out_path)[1] == ".json":
json_file = out_path
else:
json_file = _set_file_path(out_path)
with fsspec.open(json_file, "r") as f:
return json.load(f)
def save_speaker_mapping(out_path, speaker_mapping):
"""Saves speaker mapping if not yet present."""
if out_path is not None:
speakers_json_path = _set_file_path(out_path)
with fsspec.open(speakers_json_path, "w") as f:
json.dump(speaker_mapping, f, indent=4)
def get_speaker_manager(c: Coqpit, data: List = None, restore_path: str = None, out_path: str = None) -> SpeakerManager:
"""Initiate a `SpeakerManager` instance by the provided config.
Args:
c (Coqpit): Model configuration.
restore_path (str): Path to a previous training folder.
data (List): Data samples used in training to infer speakers from. It must be provided if speaker embedding
layers is used. Defaults to None.
out_path (str, optional): Save the generated speaker IDs to a output path. Defaults to None.
Returns:
SpeakerManager: initialized and ready to use instance.
"""
speaker_manager = SpeakerManager()
if c.use_speaker_embedding:
if data is not None:
speaker_manager.set_ids_from_data(data, parse_key="speaker_name")
if restore_path:
speakers_file = _set_file_path(restore_path)
# restoring speaker manager from a previous run.
if c.use_d_vector_file:
# restore speaker manager with the embedding file
if not os.path.exists(speakers_file):
print("WARNING: speakers.json was not found in restore_path, trying to use CONFIG.d_vector_file")
if not os.path.exists(c.d_vector_file):
raise RuntimeError(
"You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.d_vector_file"
)
speaker_manager.load_embeddings_from_file(c.d_vector_file)
speaker_manager.load_embeddings_from_file(speakers_file)
elif not c.use_d_vector_file: # restor speaker manager with speaker ID file.
speaker_ids_from_data = speaker_manager.name_to_id
speaker_manager.load_ids_from_file(speakers_file)
assert all(
speaker in speaker_manager.name_to_id for speaker in speaker_ids_from_data
), " [!] You cannot introduce new speakers to a pre-trained model."
elif c.use_d_vector_file and c.d_vector_file:
# new speaker manager with external speaker embeddings.
speaker_manager.load_embeddings_from_file(c.d_vector_file)
elif c.use_d_vector_file and not c.d_vector_file:
raise "use_d_vector_file is True, so you need pass a external speaker embedding file."
elif c.use_speaker_embedding and "speakers_file" in c and c.speakers_file:
# new speaker manager with speaker IDs file.
speaker_manager.load_ids_from_file(c.speakers_file)
if speaker_manager.num_speakers > 0:
print(
" > Speaker manager is loaded with {} speakers: {}".format(
speaker_manager.num_speakers, ", ".join(speaker_manager.name_to_id)
)
)
# save file if path is defined
if out_path:
out_file_path = os.path.join(out_path, "speakers.json")
print(f" > Saving `speakers.json` to {out_file_path}.")
if c.use_d_vector_file and c.d_vector_file:
speaker_manager.save_embeddings_to_file(out_file_path)
else:
speaker_manager.save_ids_to_file(out_file_path)
return speaker_manager
def get_speaker_balancer_weights(items: list):
speaker_names = np.array([item["speaker_name"] for item in items])
unique_speaker_names = np.unique(speaker_names).tolist()
speaker_ids = [unique_speaker_names.index(l) for l in speaker_names]
speaker_count = np.array([len(np.where(speaker_names == l)[0]) for l in unique_speaker_names])
weight_speaker = 1.0 / speaker_count
dataset_samples_weight = np.array([weight_speaker[l] for l in speaker_ids])
# normalize
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight)
return torch.from_numpy(dataset_samples_weight).float()