ai-content-maker/.venv/Lib/site-packages/TTS/utils/radam.py

106 lines
4.5 KiB
Python

# modified from https://github.com/LiyuanLucasLiu/RAdam
import math
import torch
from torch.optim.optimizer import Optimizer
class RAdam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if eps < 0.0:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
self.degenerated_to_sgd = degenerated_to_sgd
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
for param in params:
if "betas" in param and (param["betas"][0] != betas[0] or param["betas"][1] != betas[1]):
param["buffer"] = [[None, None, None] for _ in range(10)]
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]
)
super().__init__(params, defaults)
def __setstate__(self, state): # pylint: disable=useless-super-delegation
super().__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError("RAdam does not support sparse gradients")
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
state["step"] += 1
buffered = group["buffer"][int(state["step"] % 10)]
if state["step"] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state["step"]
beta2_t = beta2 ** state["step"]
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = math.sqrt(
(1 - beta2_t)
* (N_sma - 4)
/ (N_sma_max - 4)
* (N_sma - 2)
/ N_sma
* N_sma_max
/ (N_sma_max - 2)
) / (1 - beta1 ** state["step"])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1 ** state["step"])
else:
step_size = -1
buffered[2] = step_size
# more conservative since it's an approximated value
if N_sma >= 5:
if group["weight_decay"] != 0:
p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"])
denom = exp_avg_sq.sqrt().add_(group["eps"])
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size * group["lr"])
p.data.copy_(p_data_fp32)
elif step_size > 0:
if group["weight_decay"] != 0:
p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"])
p_data_fp32.add_(exp_avg, alpha=-step_size * group["lr"])
p.data.copy_(p_data_fp32)
return loss