279 lines
9.3 KiB
Python
279 lines
9.3 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import List, Optional
|
|
|
|
from coqpit import Coqpit
|
|
|
|
from TTS.vc.configs.shared_configs import BaseVCConfig
|
|
|
|
|
|
@dataclass
|
|
class FreeVCAudioConfig(Coqpit):
|
|
"""Audio configuration
|
|
|
|
Args:
|
|
max_wav_value (float):
|
|
The maximum value of the waveform.
|
|
|
|
input_sample_rate (int):
|
|
The sampling rate of the input waveform.
|
|
|
|
output_sample_rate (int):
|
|
The sampling rate of the output waveform.
|
|
|
|
filter_length (int):
|
|
The length of the filter.
|
|
|
|
hop_length (int):
|
|
The hop length.
|
|
|
|
win_length (int):
|
|
The window length.
|
|
|
|
n_mel_channels (int):
|
|
The number of mel channels.
|
|
|
|
mel_fmin (float):
|
|
The minimum frequency of the mel filterbank.
|
|
|
|
mel_fmax (Optional[float]):
|
|
The maximum frequency of the mel filterbank.
|
|
"""
|
|
|
|
max_wav_value: float = field(default=32768.0)
|
|
input_sample_rate: int = field(default=16000)
|
|
output_sample_rate: int = field(default=24000)
|
|
filter_length: int = field(default=1280)
|
|
hop_length: int = field(default=320)
|
|
win_length: int = field(default=1280)
|
|
n_mel_channels: int = field(default=80)
|
|
mel_fmin: float = field(default=0.0)
|
|
mel_fmax: Optional[float] = field(default=None)
|
|
|
|
|
|
@dataclass
|
|
class FreeVCArgs(Coqpit):
|
|
"""FreeVC model arguments
|
|
|
|
Args:
|
|
spec_channels (int):
|
|
The number of channels in the spectrogram.
|
|
|
|
inter_channels (int):
|
|
The number of channels in the intermediate layers.
|
|
|
|
hidden_channels (int):
|
|
The number of channels in the hidden layers.
|
|
|
|
filter_channels (int):
|
|
The number of channels in the filter layers.
|
|
|
|
n_heads (int):
|
|
The number of attention heads.
|
|
|
|
n_layers (int):
|
|
The number of layers.
|
|
|
|
kernel_size (int):
|
|
The size of the kernel.
|
|
|
|
p_dropout (float):
|
|
The dropout probability.
|
|
|
|
resblock (str):
|
|
The type of residual block.
|
|
|
|
resblock_kernel_sizes (List[int]):
|
|
The kernel sizes for the residual blocks.
|
|
|
|
resblock_dilation_sizes (List[List[int]]):
|
|
The dilation sizes for the residual blocks.
|
|
|
|
upsample_rates (List[int]):
|
|
The upsample rates.
|
|
|
|
upsample_initial_channel (int):
|
|
The number of channels in the initial upsample layer.
|
|
|
|
upsample_kernel_sizes (List[int]):
|
|
The kernel sizes for the upsample layers.
|
|
|
|
n_layers_q (int):
|
|
The number of layers in the quantization network.
|
|
|
|
use_spectral_norm (bool):
|
|
Whether to use spectral normalization.
|
|
|
|
gin_channels (int):
|
|
The number of channels in the global conditioning vector.
|
|
|
|
ssl_dim (int):
|
|
The dimension of the self-supervised learning embedding.
|
|
|
|
use_spk (bool):
|
|
Whether to use external speaker encoder.
|
|
"""
|
|
|
|
spec_channels: int = field(default=641)
|
|
inter_channels: int = field(default=192)
|
|
hidden_channels: int = field(default=192)
|
|
filter_channels: int = field(default=768)
|
|
n_heads: int = field(default=2)
|
|
n_layers: int = field(default=6)
|
|
kernel_size: int = field(default=3)
|
|
p_dropout: float = field(default=0.1)
|
|
resblock: str = field(default="1")
|
|
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
|
|
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
|
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
|
|
upsample_initial_channel: int = field(default=512)
|
|
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
|
|
n_layers_q: int = field(default=3)
|
|
use_spectral_norm: bool = field(default=False)
|
|
gin_channels: int = field(default=256)
|
|
ssl_dim: int = field(default=1024)
|
|
use_spk: bool = field(default=False)
|
|
num_spks: int = field(default=0)
|
|
segment_size: int = field(default=8960)
|
|
|
|
|
|
@dataclass
|
|
class FreeVCConfig(BaseVCConfig):
|
|
"""Defines parameters for FreeVC End2End TTS model.
|
|
|
|
Args:
|
|
model (str):
|
|
Model name. Do not change unless you know what you are doing.
|
|
|
|
model_args (FreeVCArgs):
|
|
Model architecture arguments. Defaults to `FreeVCArgs()`.
|
|
|
|
audio (FreeVCAudioConfig):
|
|
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.
|
|
|
|
grad_clip (List):
|
|
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
|
|
|
|
lr_gen (float):
|
|
Initial learning rate for the generator. Defaults to 0.0002.
|
|
|
|
lr_disc (float):
|
|
Initial learning rate for the discriminator. Defaults to 0.0002.
|
|
|
|
lr_scheduler_gen (str):
|
|
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
|
`ExponentialLR`.
|
|
|
|
lr_scheduler_gen_params (dict):
|
|
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
|
|
|
lr_scheduler_disc (str):
|
|
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
|
`ExponentialLR`.
|
|
|
|
lr_scheduler_disc_params (dict):
|
|
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
|
|
|
scheduler_after_epoch (bool):
|
|
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
|
|
|
|
optimizer (str):
|
|
Name of the optimizer to use with both the generator and the discriminator networks. One of the
|
|
`torch.optim.*`. Defaults to `AdamW`.
|
|
|
|
kl_loss_alpha (float):
|
|
Loss weight for KL loss. Defaults to 1.0.
|
|
|
|
disc_loss_alpha (float):
|
|
Loss weight for the discriminator loss. Defaults to 1.0.
|
|
|
|
gen_loss_alpha (float):
|
|
Loss weight for the generator loss. Defaults to 1.0.
|
|
|
|
feat_loss_alpha (float):
|
|
Loss weight for the feature matching loss. Defaults to 1.0.
|
|
|
|
mel_loss_alpha (float):
|
|
Loss weight for the mel loss. Defaults to 45.0.
|
|
|
|
return_wav (bool):
|
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
|
|
|
compute_linear_spec (bool):
|
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
|
|
|
use_weighted_sampler (bool):
|
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
|
|
|
weighted_sampler_attrs (dict):
|
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
|
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
|
|
|
weighted_sampler_multipliers (dict):
|
|
Weight each unique value of a key returned by the formatter for weighted sampling.
|
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
|
|
|
r (int):
|
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
|
|
|
add_blank (bool):
|
|
If true, a blank token is added in between every character. Defaults to `True`.
|
|
|
|
test_sentences (List[List]):
|
|
List of sentences with speaker and language information to be used for testing.
|
|
|
|
language_ids_file (str):
|
|
Path to the language ids file.
|
|
|
|
use_language_embedding (bool):
|
|
If true, language embedding is used. Defaults to `False`.
|
|
|
|
Note:
|
|
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
|
|
|
|
Example:
|
|
|
|
>>> from TTS.vc.configs.freevc_config import FreeVCConfig
|
|
>>> config = FreeVCConfig()
|
|
"""
|
|
|
|
model: str = "freevc"
|
|
# model specific params
|
|
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
|
|
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)
|
|
|
|
# optimizer
|
|
# TODO with training support
|
|
|
|
# loss params
|
|
# TODO with training support
|
|
|
|
# data loader params
|
|
return_wav: bool = True
|
|
compute_linear_spec: bool = True
|
|
|
|
# sampler params
|
|
use_weighted_sampler: bool = False # TODO: move it to the base config
|
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
|
|
|
# overrides
|
|
r: int = 1 # DO NOT CHANGE
|
|
add_blank: bool = True
|
|
|
|
# multi-speaker settings
|
|
# use speaker embedding layer
|
|
num_speakers: int = 0
|
|
speakers_file: str = None
|
|
speaker_embedding_channels: int = 256
|
|
|
|
# use d-vectors
|
|
use_d_vector_file: bool = False
|
|
d_vector_file: List[str] = None
|
|
d_vector_dim: int = None
|
|
|
|
def __post_init__(self):
|
|
for key, val in self.model_args.items():
|
|
if hasattr(self, key):
|
|
self[key] = val
|