388 lines
13 KiB
Python
388 lines
13 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn import Conv1d
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils.parametrizations import weight_norm
|
|
from torch.nn.utils.parametrize import remove_parametrizations
|
|
|
|
import TTS.vc.modules.freevc.commons as commons
|
|
from TTS.vc.modules.freevc.commons import get_padding, init_weights
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, channels, eps=1e-5):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.eps = eps
|
|
|
|
self.gamma = nn.Parameter(torch.ones(channels))
|
|
self.beta = nn.Parameter(torch.zeros(channels))
|
|
|
|
def forward(self, x):
|
|
x = x.transpose(1, -1)
|
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
|
return x.transpose(1, -1)
|
|
|
|
|
|
class ConvReluNorm(nn.Module):
|
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = kernel_size
|
|
self.n_layers = n_layers
|
|
self.p_dropout = p_dropout
|
|
assert n_layers > 1, "Number of layers should be larger than 0."
|
|
|
|
self.conv_layers = nn.ModuleList()
|
|
self.norm_layers = nn.ModuleList()
|
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
|
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
|
for _ in range(n_layers - 1):
|
|
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
|
self.proj.weight.data.zero_()
|
|
self.proj.bias.data.zero_()
|
|
|
|
def forward(self, x, x_mask):
|
|
x_org = x
|
|
for i in range(self.n_layers):
|
|
x = self.conv_layers[i](x * x_mask)
|
|
x = self.norm_layers[i](x)
|
|
x = self.relu_drop(x)
|
|
x = x_org + self.proj(x)
|
|
return x * x_mask
|
|
|
|
|
|
class DDSConv(nn.Module):
|
|
"""
|
|
Dialted and Depth-Separable Convolution
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.kernel_size = kernel_size
|
|
self.n_layers = n_layers
|
|
self.p_dropout = p_dropout
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.convs_sep = nn.ModuleList()
|
|
self.convs_1x1 = nn.ModuleList()
|
|
self.norms_1 = nn.ModuleList()
|
|
self.norms_2 = nn.ModuleList()
|
|
for i in range(n_layers):
|
|
dilation = kernel_size**i
|
|
padding = (kernel_size * dilation - dilation) // 2
|
|
self.convs_sep.append(
|
|
nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding)
|
|
)
|
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
|
self.norms_1.append(LayerNorm(channels))
|
|
self.norms_2.append(LayerNorm(channels))
|
|
|
|
def forward(self, x, x_mask, g=None):
|
|
if g is not None:
|
|
x = x + g
|
|
for i in range(self.n_layers):
|
|
y = self.convs_sep[i](x * x_mask)
|
|
y = self.norms_1[i](y)
|
|
y = F.gelu(y)
|
|
y = self.convs_1x1[i](y)
|
|
y = self.norms_2[i](y)
|
|
y = F.gelu(y)
|
|
y = self.drop(y)
|
|
x = x + y
|
|
return x * x_mask
|
|
|
|
|
|
class WN(torch.nn.Module):
|
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
|
super(WN, self).__init__()
|
|
assert kernel_size % 2 == 1
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = (kernel_size,)
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
self.p_dropout = p_dropout
|
|
|
|
self.in_layers = torch.nn.ModuleList()
|
|
self.res_skip_layers = torch.nn.ModuleList()
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
if gin_channels != 0:
|
|
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
|
|
self.cond_layer = torch.nn.utils.parametrizations.weight_norm(cond_layer, name="weight")
|
|
|
|
for i in range(n_layers):
|
|
dilation = dilation_rate**i
|
|
padding = int((kernel_size * dilation - dilation) / 2)
|
|
in_layer = torch.nn.Conv1d(
|
|
hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding
|
|
)
|
|
in_layer = torch.nn.utils.parametrizations.weight_norm(in_layer, name="weight")
|
|
self.in_layers.append(in_layer)
|
|
|
|
# last one is not necessary
|
|
if i < n_layers - 1:
|
|
res_skip_channels = 2 * hidden_channels
|
|
else:
|
|
res_skip_channels = hidden_channels
|
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
|
res_skip_layer = torch.nn.utils.parametrizations.weight_norm(res_skip_layer, name="weight")
|
|
self.res_skip_layers.append(res_skip_layer)
|
|
|
|
def forward(self, x, x_mask, g=None, **kwargs):
|
|
output = torch.zeros_like(x)
|
|
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
|
|
|
if g is not None:
|
|
g = self.cond_layer(g)
|
|
|
|
for i in range(self.n_layers):
|
|
x_in = self.in_layers[i](x)
|
|
if g is not None:
|
|
cond_offset = i * 2 * self.hidden_channels
|
|
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
|
else:
|
|
g_l = torch.zeros_like(x_in)
|
|
|
|
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
|
acts = self.drop(acts)
|
|
|
|
res_skip_acts = self.res_skip_layers[i](acts)
|
|
if i < self.n_layers - 1:
|
|
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
|
x = (x + res_acts) * x_mask
|
|
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
|
else:
|
|
output = output + res_skip_acts
|
|
return output * x_mask
|
|
|
|
def remove_weight_norm(self):
|
|
if self.gin_channels != 0:
|
|
remove_parametrizations(self.cond_layer, "weight")
|
|
for l in self.in_layers:
|
|
remove_parametrizations(l, "weight")
|
|
for l in self.res_skip_layers:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
super(ResBlock1, self).__init__()
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.convs1.apply(init_weights)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
]
|
|
)
|
|
self.convs2.apply(init_weights)
|
|
|
|
def forward(self, x, x_mask=None):
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
if x_mask is not None:
|
|
xt = xt * x_mask
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
|
if x_mask is not None:
|
|
xt = xt * x_mask
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
if x_mask is not None:
|
|
x = x * x_mask
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_parametrizations(l, "weight")
|
|
for l in self.convs2:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
|
super(ResBlock2, self).__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.convs.apply(init_weights)
|
|
|
|
def forward(self, x, x_mask=None):
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
if x_mask is not None:
|
|
xt = xt * x_mask
|
|
xt = c(xt)
|
|
x = xt + x
|
|
if x_mask is not None:
|
|
x = x * x_mask
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs:
|
|
remove_parametrizations(l, "weight")
|
|
|
|
|
|
class Log(nn.Module):
|
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
|
if not reverse:
|
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
|
logdet = torch.sum(-y, [1, 2])
|
|
return y, logdet
|
|
else:
|
|
x = torch.exp(x) * x_mask
|
|
return x
|
|
|
|
|
|
class Flip(nn.Module):
|
|
def forward(self, x, *args, reverse=False, **kwargs):
|
|
x = torch.flip(x, [1])
|
|
if not reverse:
|
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
|
return x, logdet
|
|
else:
|
|
return x
|
|
|
|
|
|
class ElementwiseAffine(nn.Module):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.m = nn.Parameter(torch.zeros(channels, 1))
|
|
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
|
|
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
|
if not reverse:
|
|
y = self.m + torch.exp(self.logs) * x
|
|
y = y * x_mask
|
|
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
|
return y, logdet
|
|
else:
|
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
|
return x
|
|
|
|
|
|
class ResidualCouplingLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
p_dropout=0,
|
|
gin_channels=0,
|
|
mean_only=False,
|
|
):
|
|
assert channels % 2 == 0, "channels should be divisible by 2"
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.half_channels = channels // 2
|
|
self.mean_only = mean_only
|
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
|
self.enc = WN(
|
|
hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels
|
|
)
|
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
|
self.post.weight.data.zero_()
|
|
self.post.bias.data.zero_()
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
|
h = self.pre(x0) * x_mask
|
|
h = self.enc(h, x_mask, g=g)
|
|
stats = self.post(h) * x_mask
|
|
if not self.mean_only:
|
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
|
else:
|
|
m = stats
|
|
logs = torch.zeros_like(m)
|
|
|
|
if not reverse:
|
|
x1 = m + x1 * torch.exp(logs) * x_mask
|
|
x = torch.cat([x0, x1], 1)
|
|
logdet = torch.sum(logs, [1, 2])
|
|
return x, logdet
|
|
else:
|
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
|
x = torch.cat([x0, x1], 1)
|
|
return x
|