76 lines
2.1 KiB
Python
76 lines
2.1 KiB
Python
import blingfire
|
|
import nltk
|
|
import pysbd
|
|
import spacy
|
|
import stanza
|
|
|
|
from syntok.tokenizer import Tokenizer
|
|
import syntok.segmenter as syntok_segmenter
|
|
|
|
pysbd_segmenter = pysbd.Segmenter(language="en", clean=False, char_span=False)
|
|
|
|
nlp = spacy.blank('en')
|
|
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
|
nlp_dep = spacy.load('en_core_web_sm', disable=["ner"])
|
|
#stanza.download('en')
|
|
stanza_nlp = stanza.Pipeline(lang='en', processors='tokenize')
|
|
|
|
syntok_tokenizer = Tokenizer()
|
|
|
|
def blingfire_tokenize(text):
|
|
return blingfire.text_to_sentences(text).split('\n')
|
|
|
|
def nltk_tokenize(text):
|
|
return nltk.sent_tokenize(text)
|
|
|
|
def pysbd_tokenize(text):
|
|
segments = pysbd_segmenter.segment(text)
|
|
segments = [s.strip() for s in segments]
|
|
return segments
|
|
|
|
def spacy_tokenize(text):
|
|
return [sent.text.strip("\n") for sent in nlp(text).sents]
|
|
|
|
def spacy_dep_tokenize(text):
|
|
return [sent.text.strip("\n") for sent in nlp_dep(text).sents]
|
|
|
|
def stanza_tokenize(text):
|
|
return [e.text for e in stanza_nlp(text).sentences]
|
|
|
|
def make_sentences(segmented_tokens):
|
|
for sentence in segmented_tokens:
|
|
yield "".join(str(token) for token in sentence).strip()
|
|
|
|
def syntok_tokenize(text):
|
|
tokens = syntok_tokenizer.split(text)
|
|
result = syntok_segmenter.split(iter(tokens))
|
|
segments = [sent for sent in make_sentences(result)]
|
|
return segments
|
|
|
|
def speed_benchmark(big_text, tokenize_func):
|
|
segments = tokenize_func(big_text)
|
|
return segments
|
|
|
|
if __name__ == "__main__":
|
|
import time
|
|
libraries = (
|
|
blingfire_tokenize,
|
|
nltk_tokenize,
|
|
pysbd_tokenize,
|
|
spacy_tokenize,
|
|
spacy_dep_tokenize,
|
|
stanza_tokenize,
|
|
syntok_tokenize)
|
|
|
|
for tokenize_func in libraries:
|
|
t = time.time()
|
|
# wget http://www.gutenberg.org/files/1661/1661-0.txt -P benchmarks/
|
|
with open('benchmarks/1661-0.txt') as bigfile:
|
|
big_text = bigfile.read()
|
|
sentences = speed_benchmark(big_text, tokenize_func)
|
|
|
|
time_taken = time.time() - t
|
|
print()
|
|
print(tokenize_func.__name__)
|
|
print('Speed : {:>20.2f} ms'.format(time_taken * 1000))
|