ai-content-maker/.venv/Lib/site-packages/einops/layers/tensorflow.py

104 lines
3.2 KiB
Python

"""
Comment about tensorflow layers:
unfortunately instructions on creation of TF layers change constantly,
and changed way too many times at this point to remember what-compatible-where.
Layers in einops==0.7.0 (and several prior versions)
are compatible with TF 2.13
Layers in einops==0.8.0 were re-implemented
according to official instructions for TF 2.16
"""
from typing import Optional, Dict, cast
import tensorflow as tf
from tensorflow.keras.layers import Layer
from . import RearrangeMixin, ReduceMixin
from ._einmix import _EinmixMixin
__author__ = "Alex Rogozhnikov"
class Rearrange(RearrangeMixin, Layer):
def build(self, input_shape):
pass # layer does not have any parameters to be initialized
def call(self, inputs):
return self._apply_recipe(inputs)
def get_config(self):
return {"pattern": self.pattern, **self.axes_lengths}
class Reduce(ReduceMixin, Layer):
def build(self, input_shape):
pass # layer does not have any parameters to be initialized
def call(self, inputs):
return self._apply_recipe(inputs)
def get_config(self):
return {"pattern": self.pattern, "reduction": self.reduction, **self.axes_lengths}
class EinMix(_EinmixMixin, Layer):
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound):
# this method is called in __init__,
# but we postpone actual creation to build(), as TF instruction suggests
self._params = [weight_shape, weight_bound, bias_shape, bias_bound]
def _create_rearrange_layers(
self,
pre_reshape_pattern: Optional[str],
pre_reshape_lengths: Optional[Dict],
post_reshape_pattern: Optional[str],
post_reshape_lengths: Optional[Dict],
):
self.pre_rearrange = None
if pre_reshape_pattern is not None:
self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths))
self.post_rearrange = None
if post_reshape_pattern is not None:
self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths))
def build(self, input_shape):
[weight_shape, weight_bound, bias_shape, bias_bound] = self._params
self.weight = self.add_weight(
shape=weight_shape,
initializer=tf.random_uniform_initializer(-weight_bound, weight_bound),
trainable=True,
)
if bias_shape is not None:
self.bias = self.add_weight(
shape=bias_shape,
initializer=tf.random_uniform_initializer(-bias_bound, bias_bound),
trainable=True,
)
else:
self.bias = None
def call(self, inputs):
if self.pre_rearrange is not None:
inputs = self.pre_rearrange(inputs)
result = tf.einsum(self.einsum_pattern, inputs, self.weight)
if self.bias is not None:
result = result + self.bias
if self.post_rearrange is not None:
result = self.post_rearrange(result)
return result
def get_config(self):
return {
"pattern": self.pattern,
"weight_shape": self.weight_shape,
"bias_shape": self.bias_shape,
**self.axes_lengths,
}