ai-content-maker/.venv/Lib/site-packages/encodec/msstftd.py

148 lines
6.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""MS-STFT discriminator, provided here for reference."""
import typing as tp
import torchaudio
import torch
from torch import nn
from einops import rearrange
from .modules import NormConv2d
FeatureMapType = tp.List[torch.Tensor]
LogitsType = torch.Tensor
DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]]
def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)
class DiscriminatorSTFT(nn.Module):
"""STFT sub-discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_fft (int): Size of FFT for each scale. Default: 1024
hop_length (int): Length of hop between STFT windows for each scale. Default: 256
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)``
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)``
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]``
win_length (int): Window size for each scale. Default: 1024
normalized (bool): Whether to normalize by magnitude after stft. Default: True
norm (str): Normalization method. Default: `'weight_norm'`
activation (str): Activation function. Default: `'LeakyReLU'`
activation_params (dict): Parameters to provide to the activation function.
growth (int): Growth factor for the filters. Default: 1
"""
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
super().__init__()
assert len(kernel_size) == 2
assert len(stride) == 2
self.filters = filters
self.in_channels = in_channels
self.out_channels = out_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.activation = getattr(torch.nn, activation)(**activation_params)
self.spec_transform = torchaudio.transforms.Spectrogram(
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
normalized=self.normalized, center=False, pad_mode=None, power=None)
spec_channels = 2 * self.in_channels
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
)
in_chs = min(filters_scale * self.filters, max_filters)
for i, dilation in enumerate(dilations):
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
norm=norm))
in_chs = out_chs
out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm))
self.conv_post = NormConv2d(out_chs, self.out_channels,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm)
def forward(self, x: torch.Tensor):
fmap = []
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
z = torch.cat([z.real, z.imag], dim=1)
z = rearrange(z, 'b c w t -> b c t w')
for i, layer in enumerate(self.convs):
z = layer(z)
z = self.activation(z)
fmap.append(z)
z = self.conv_post(z)
return z, fmap
class MultiScaleSTFTDiscriminator(nn.Module):
"""Multi-Scale STFT (MS-STFT) discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_ffts (Sequence[int]): Size of FFT for each scale
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale
win_lengths (Sequence[int]): Window size for each scale
**kwargs: additional args for STFTDiscriminator
"""
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128],
win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs):
super().__init__()
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
self.discriminators = nn.ModuleList([
DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
for i in range(len(n_ffts))
])
self.num_discriminators = len(self.discriminators)
def forward(self, x: torch.Tensor) -> DiscriminatorOutput:
logits = []
fmaps = []
for disc in self.discriminators:
logit, fmap = disc(x)
logits.append(logit)
fmaps.append(fmap)
return logits, fmaps
def test():
disc = MultiScaleSTFTDiscriminator(filters=32)
y = torch.randn(1, 1, 24000)
y_hat = torch.randn(1, 1, 24000)
y_disc_r, fmap_r = disc(y)
y_disc_gen, fmap_gen = disc(y_hat)
assert len(y_disc_r) == len(y_disc_gen) == len(fmap_r) == len(fmap_gen) == disc.num_discriminators
assert all([len(fm) == 5 for fm in fmap_r + fmap_gen])
assert all([list(f.shape)[:2] == [1, 32] for fm in fmap_r + fmap_gen for f in fm])
assert all([len(logits.shape) == 4 for logits in y_disc_r + y_disc_gen])
if __name__ == '__main__':
test()