ai-content-maker/.venv/Lib/site-packages/huggingface_hub/inference/_common.py

483 lines
16 KiB
Python

# coding=utf-8
# Copyright 2023-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains utilities used by both the sync and async inference clients."""
import base64
import io
import json
import logging
import time
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
AsyncIterable,
BinaryIO,
ContextManager,
Dict,
Generator,
Iterable,
List,
Literal,
NoReturn,
Optional,
Set,
Union,
overload,
)
from requests import HTTPError
from huggingface_hub.errors import (
GenerationError,
IncompleteGenerationError,
OverloadedError,
TextGenerationError,
UnknownError,
ValidationError,
)
from ..constants import ENDPOINT
from ..utils import (
build_hf_headers,
get_session,
hf_raise_for_status,
is_aiohttp_available,
is_numpy_available,
is_pillow_available,
)
from ._generated.types import (
ChatCompletionStreamOutput,
ChatCompletionStreamOutputChoice,
ChatCompletionStreamOutputDelta,
TextGenerationStreamOutput,
)
if TYPE_CHECKING:
from aiohttp import ClientResponse, ClientSession
from PIL import Image
# TYPES
UrlT = str
PathT = Union[str, Path]
BinaryT = Union[bytes, BinaryIO]
ContentT = Union[BinaryT, PathT, UrlT]
# Use to set a Accept: image/png header
TASKS_EXPECTING_IMAGES = {"text-to-image", "image-to-image"}
logger = logging.getLogger(__name__)
# Add dataclass for ModelStatus. We use this dataclass in get_model_status function.
@dataclass
class ModelStatus:
"""
This Dataclass represents the the model status in the Hugging Face Inference API.
Args:
loaded (`bool`):
If the model is currently loaded into Hugging Face's InferenceAPI. Models
are loaded on-demand, leading to the user's first request taking longer.
If a model is loaded, you can be assured that it is in a healthy state.
state (`str`):
The current state of the model. This can be 'Loaded', 'Loadable', 'TooBig'.
If a model's state is 'Loadable', it's not too big and has a supported
backend. Loadable models are automatically loaded when the user first
requests inference on the endpoint. This means it is transparent for the
user to load a model, except that the first call takes longer to complete.
compute_type (`Dict`):
Information about the compute resource the model is using or will use, such as 'gpu' type and number of
replicas.
framework (`str`):
The name of the framework that the model was built with, such as 'transformers'
or 'text-generation-inference'.
"""
loaded: bool
state: str
compute_type: Dict
framework: str
## IMPORT UTILS
def _import_aiohttp():
# Make sure `aiohttp` is installed on the machine.
if not is_aiohttp_available():
raise ImportError("Please install aiohttp to use `AsyncInferenceClient` (`pip install aiohttp`).")
import aiohttp
return aiohttp
def _import_numpy():
"""Make sure `numpy` is installed on the machine."""
if not is_numpy_available():
raise ImportError("Please install numpy to use deal with embeddings (`pip install numpy`).")
import numpy
return numpy
def _import_pil_image():
"""Make sure `PIL` is installed on the machine."""
if not is_pillow_available():
raise ImportError(
"Please install Pillow to use deal with images (`pip install Pillow`). If you don't want the image to be"
" post-processed, use `client.post(...)` and get the raw response from the server."
)
from PIL import Image
return Image
## RECOMMENDED MODELS
# Will be globally fetched only once (see '_fetch_recommended_models')
_RECOMMENDED_MODELS: Optional[Dict[str, Optional[str]]] = None
def _fetch_recommended_models() -> Dict[str, Optional[str]]:
global _RECOMMENDED_MODELS
if _RECOMMENDED_MODELS is None:
response = get_session().get(f"{ENDPOINT}/api/tasks", headers=build_hf_headers())
hf_raise_for_status(response)
_RECOMMENDED_MODELS = {
task: _first_or_none(details["widgetModels"]) for task, details in response.json().items()
}
return _RECOMMENDED_MODELS
def _first_or_none(items: List[Any]) -> Optional[Any]:
try:
return items[0] or None
except IndexError:
return None
## ENCODING / DECODING UTILS
@overload
def _open_as_binary(
content: ContentT,
) -> ContextManager[BinaryT]: ... # means "if input is not None, output is not None"
@overload
def _open_as_binary(
content: Literal[None],
) -> ContextManager[Literal[None]]: ... # means "if input is None, output is None"
@contextmanager # type: ignore
def _open_as_binary(content: Optional[ContentT]) -> Generator[Optional[BinaryT], None, None]:
"""Open `content` as a binary file, either from a URL, a local path, or raw bytes.
Do nothing if `content` is None,
TODO: handle a PIL.Image as input
TODO: handle base64 as input
"""
# If content is a string => must be either a URL or a path
if isinstance(content, str):
if content.startswith("https://") or content.startswith("http://"):
logger.debug(f"Downloading content from {content}")
yield get_session().get(content).content # TODO: retrieve as stream and pipe to post request ?
return
content = Path(content)
if not content.exists():
raise FileNotFoundError(
f"File not found at {content}. If `data` is a string, it must either be a URL or a path to a local"
" file. To pass raw content, please encode it as bytes first."
)
# If content is a Path => open it
if isinstance(content, Path):
logger.debug(f"Opening content from {content}")
with content.open("rb") as f:
yield f
else:
# Otherwise: already a file-like object or None
yield content
def _b64_encode(content: ContentT) -> str:
"""Encode a raw file (image, audio) into base64. Can be byes, an opened file, a path or a URL."""
with _open_as_binary(content) as data:
data_as_bytes = data if isinstance(data, bytes) else data.read()
return base64.b64encode(data_as_bytes).decode()
def _b64_to_image(encoded_image: str) -> "Image":
"""Parse a base64-encoded string into a PIL Image."""
Image = _import_pil_image()
return Image.open(io.BytesIO(base64.b64decode(encoded_image)))
def _bytes_to_list(content: bytes) -> List:
"""Parse bytes from a Response object into a Python list.
Expects the response body to be JSON-encoded data.
NOTE: This is exactly the same implementation as `_bytes_to_dict` and will not complain if the returned data is a
dictionary. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect.
"""
return json.loads(content.decode())
def _bytes_to_dict(content: bytes) -> Dict:
"""Parse bytes from a Response object into a Python dictionary.
Expects the response body to be JSON-encoded data.
NOTE: This is exactly the same implementation as `_bytes_to_list` and will not complain if the returned data is a
list. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect.
"""
return json.loads(content.decode())
def _bytes_to_image(content: bytes) -> "Image":
"""Parse bytes from a Response object into a PIL Image.
Expects the response body to be raw bytes. To deal with b64 encoded images, use `_b64_to_image` instead.
"""
Image = _import_pil_image()
return Image.open(io.BytesIO(content))
## STREAMING UTILS
def _stream_text_generation_response(
bytes_output_as_lines: Iterable[bytes], details: bool
) -> Union[Iterable[str], Iterable[TextGenerationStreamOutput]]:
"""Used in `InferenceClient.text_generation`."""
# Parse ServerSentEvents
for byte_payload in bytes_output_as_lines:
output = _format_text_generation_stream_output(byte_payload, details)
if output is not None:
yield output
async def _async_stream_text_generation_response(
bytes_output_as_lines: AsyncIterable[bytes], details: bool
) -> Union[AsyncIterable[str], AsyncIterable[TextGenerationStreamOutput]]:
"""Used in `AsyncInferenceClient.text_generation`."""
# Parse ServerSentEvents
async for byte_payload in bytes_output_as_lines:
output = _format_text_generation_stream_output(byte_payload, details)
if output is not None:
yield output
def _format_text_generation_stream_output(
byte_payload: bytes, details: bool
) -> Optional[Union[str, TextGenerationStreamOutput]]:
if not byte_payload.startswith(b"data:"):
return None # empty line
# Decode payload
payload = byte_payload.decode("utf-8")
json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
# Either an error as being returned
if json_payload.get("error") is not None:
raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type"))
# Or parse token payload
output = TextGenerationStreamOutput.parse_obj_as_instance(json_payload)
return output.token.text if not details else output
def _stream_chat_completion_response_from_text_generation(
text_generation_output: Iterable[TextGenerationStreamOutput],
) -> Iterable[ChatCompletionStreamOutput]:
"""Used in `InferenceClient.chat_completion`."""
created = int(time.time())
for item in text_generation_output:
yield _format_chat_completion_stream_output_from_text_generation(item, created)
async def _async_stream_chat_completion_response_from_text_generation(
text_generation_output: AsyncIterable[TextGenerationStreamOutput],
) -> AsyncIterable[ChatCompletionStreamOutput]:
"""Used in `AsyncInferenceClient.chat_completion`."""
created = int(time.time())
async for item in text_generation_output:
yield _format_chat_completion_stream_output_from_text_generation(item, created)
def _format_chat_completion_stream_output_from_text_generation(
item: TextGenerationStreamOutput, created: int
) -> ChatCompletionStreamOutput:
if item.details is None:
# new token generated => return delta
return ChatCompletionStreamOutput(
choices=[
ChatCompletionStreamOutputChoice(
delta=ChatCompletionStreamOutputDelta(
role="assistant",
content=item.token.text,
),
finish_reason=None,
index=0,
)
],
created=created,
)
else:
# generation is completed => return finish reason
return ChatCompletionStreamOutput(
choices=[
ChatCompletionStreamOutputChoice(
delta=ChatCompletionStreamOutputDelta(),
finish_reason=item.details.finish_reason,
index=0,
)
],
created=created,
)
def _stream_chat_completion_response_from_bytes(
bytes_lines: Iterable[bytes],
) -> Iterable[ChatCompletionStreamOutput]:
"""Used in `InferenceClient.chat_completion` if model is served with TGI."""
for item in bytes_lines:
output = _format_chat_completion_stream_output_from_text_generation_from_bytes(item)
if output is not None:
yield output
async def _async_stream_chat_completion_response_from_bytes(
bytes_lines: AsyncIterable[bytes],
) -> AsyncIterable[ChatCompletionStreamOutput]:
"""Used in `AsyncInferenceClient.chat_completion`."""
async for item in bytes_lines:
output = _format_chat_completion_stream_output_from_text_generation_from_bytes(item)
if output is not None:
yield output
def _format_chat_completion_stream_output_from_text_generation_from_bytes(
byte_payload: bytes,
) -> Optional[ChatCompletionStreamOutput]:
if not byte_payload.startswith(b"data:"):
return None # empty line
# Decode payload
payload = byte_payload.decode("utf-8")
json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
return ChatCompletionStreamOutput.parse_obj_as_instance(json_payload)
async def _async_yield_from(client: "ClientSession", response: "ClientResponse") -> AsyncIterable[bytes]:
async for byte_payload in response.content:
yield byte_payload
await client.close()
# "TGI servers" are servers running with the `text-generation-inference` backend.
# This backend is the go-to solution to run large language models at scale. However,
# for some smaller models (e.g. "gpt2") the default `transformers` + `api-inference`
# solution is still in use.
#
# Both approaches have very similar APIs, but not exactly the same. What we do first in
# the `text_generation` method is to assume the model is served via TGI. If we realize
# it's not the case (i.e. we receive an HTTP 400 Bad Request), we fallback to the
# default API with a warning message. We remember for each model if it's a TGI server
# or not using `_NON_TGI_SERVERS` global variable.
#
# In addition, TGI servers have a built-in API route for chat-completion, which is not
# available on the default API. We use this route to provide a more consistent behavior
# when available.
#
# For more details, see https://github.com/huggingface/text-generation-inference and
# https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task.
_NON_TGI_SERVERS: Set[Optional[str]] = set()
def _set_as_non_tgi(model: Optional[str]) -> None:
_NON_TGI_SERVERS.add(model)
def _is_tgi_server(model: Optional[str]) -> bool:
return model not in _NON_TGI_SERVERS
_NON_CHAT_COMPLETION_SERVER: Set[str] = set()
def _set_as_non_chat_completion_server(model: str) -> None:
print("Set as non chat completion", model)
_NON_CHAT_COMPLETION_SERVER.add(model)
def _is_chat_completion_server(model: str) -> bool:
return model not in _NON_CHAT_COMPLETION_SERVER
# TEXT GENERATION ERRORS
# ----------------------
# Text-generation errors are parsed separately to handle as much as possible the errors returned by the text generation
# inference project (https://github.com/huggingface/text-generation-inference).
# ----------------------
def raise_text_generation_error(http_error: HTTPError) -> NoReturn:
"""
Try to parse text-generation-inference error message and raise HTTPError in any case.
Args:
error (`HTTPError`):
The HTTPError that have been raised.
"""
# Try to parse a Text Generation Inference error
try:
# Hacky way to retrieve payload in case of aiohttp error
payload = getattr(http_error, "response_error_payload", None) or http_error.response.json()
error = payload.get("error")
error_type = payload.get("error_type")
except Exception: # no payload
raise http_error
# If error_type => more information than `hf_raise_for_status`
if error_type is not None:
exception = _parse_text_generation_error(error, error_type)
raise exception from http_error
# Otherwise, fallback to default error
raise http_error
def _parse_text_generation_error(error: Optional[str], error_type: Optional[str]) -> TextGenerationError:
if error_type == "generation":
return GenerationError(error) # type: ignore
if error_type == "incomplete_generation":
return IncompleteGenerationError(error) # type: ignore
if error_type == "overloaded":
return OverloadedError(error) # type: ignore
if error_type == "validation":
return ValidationError(error) # type: ignore
return UnknownError(error) # type: ignore