616 lines
20 KiB
Python
616 lines
20 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Onset detection
|
|
===============
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
onset_detect
|
|
onset_backtrack
|
|
onset_strength
|
|
onset_strength_multi
|
|
"""
|
|
|
|
import numpy as np
|
|
import scipy
|
|
|
|
from ._cache import cache
|
|
from . import core
|
|
from . import util
|
|
from .util.exceptions import ParameterError
|
|
|
|
from .feature.spectral import melspectrogram
|
|
from typing import Any, Callable, Iterable, Optional, Union, Sequence
|
|
|
|
__all__ = ["onset_detect", "onset_strength", "onset_strength_multi", "onset_backtrack"]
|
|
|
|
|
|
def onset_detect(
|
|
*,
|
|
y: Optional[np.ndarray] = None,
|
|
sr: float = 22050,
|
|
onset_envelope: Optional[np.ndarray] = None,
|
|
hop_length: int = 512,
|
|
backtrack: bool = False,
|
|
energy: Optional[np.ndarray] = None,
|
|
units: str = "frames",
|
|
normalize: bool = True,
|
|
**kwargs: Any,
|
|
) -> np.ndarray:
|
|
"""Locate note onset events by picking peaks in an onset strength envelope.
|
|
|
|
The `peak_pick` parameters were chosen by large-scale hyper-parameter
|
|
optimization over the dataset provided by [#]_.
|
|
|
|
.. [#] https://github.com/CPJKU/onset_db
|
|
|
|
Parameters
|
|
----------
|
|
y : np.ndarray [shape=(n,)]
|
|
audio time series, must be monophonic
|
|
|
|
sr : number > 0 [scalar]
|
|
sampling rate of ``y``
|
|
|
|
onset_envelope : np.ndarray [shape=(m,)]
|
|
(optional) pre-computed onset strength envelope
|
|
|
|
hop_length : int > 0 [scalar]
|
|
hop length (in samples)
|
|
|
|
units : {'frames', 'samples', 'time'}
|
|
The units to encode detected onset events in.
|
|
By default, 'frames' are used.
|
|
|
|
backtrack : bool
|
|
If ``True``, detected onset events are backtracked to the nearest
|
|
preceding minimum of ``energy``.
|
|
|
|
This is primarily useful when using onsets as slice points for segmentation.
|
|
|
|
energy : np.ndarray [shape=(m,)] (optional)
|
|
An energy function to use for backtracking detected onset events.
|
|
If none is provided, then ``onset_envelope`` is used.
|
|
|
|
normalize : bool
|
|
If ``True`` (default), normalize the onset envelope to have minimum of 0 and
|
|
maximum of 1 prior to detection. This is helpful for standardizing the
|
|
parameters of `librosa.util.peak_pick`.
|
|
|
|
Otherwise, the onset envelope is left unnormalized.
|
|
|
|
**kwargs : additional keyword arguments
|
|
Additional parameters for peak picking.
|
|
|
|
See `librosa.util.peak_pick` for details.
|
|
|
|
Returns
|
|
-------
|
|
onsets : np.ndarray [shape=(n_onsets,)]
|
|
estimated positions of detected onsets, in whichever units
|
|
are specified. By default, frame indices.
|
|
|
|
.. note::
|
|
If no onset strength could be detected, onset_detect returns
|
|
an empty list.
|
|
|
|
Raises
|
|
------
|
|
ParameterError
|
|
if neither ``y`` nor ``onsets`` are provided
|
|
|
|
or if ``units`` is not one of 'frames', 'samples', or 'time'
|
|
|
|
See Also
|
|
--------
|
|
onset_strength : compute onset strength per-frame
|
|
onset_backtrack : backtracking onset events
|
|
librosa.util.peak_pick : pick peaks from a time series
|
|
|
|
Examples
|
|
--------
|
|
Get onset times from a signal
|
|
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
|
>>> librosa.onset.onset_detect(y=y, sr=sr, units='time')
|
|
array([0.07 , 0.232, 0.395, 0.604, 0.743, 0.929, 1.045, 1.115,
|
|
1.416, 1.672, 1.881, 2.043, 2.206, 2.368, 2.554, 3.019])
|
|
|
|
Or use a pre-computed onset envelope
|
|
|
|
>>> o_env = librosa.onset.onset_strength(y=y, sr=sr)
|
|
>>> times = librosa.times_like(o_env, sr=sr)
|
|
>>> onset_frames = librosa.onset.onset_detect(onset_envelope=o_env, sr=sr)
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> D = np.abs(librosa.stft(y))
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
|
|
>>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max),
|
|
... x_axis='time', y_axis='log', ax=ax[0])
|
|
>>> ax[0].set(title='Power spectrogram')
|
|
>>> ax[0].label_outer()
|
|
>>> ax[1].plot(times, o_env, label='Onset strength')
|
|
>>> ax[1].vlines(times[onset_frames], 0, o_env.max(), color='r', alpha=0.9,
|
|
... linestyle='--', label='Onsets')
|
|
>>> ax[1].legend()
|
|
"""
|
|
# First, get the frame->beat strength profile if we don't already have one
|
|
if onset_envelope is None:
|
|
if y is None:
|
|
raise ParameterError("y or onset_envelope must be provided")
|
|
|
|
onset_envelope = onset_strength(y=y, sr=sr, hop_length=hop_length)
|
|
|
|
# Shift onset envelope up to be non-negative
|
|
# (a common normalization step to make the threshold more consistent)
|
|
if normalize:
|
|
# Normalize onset strength function to [0, 1] range
|
|
onset_envelope = onset_envelope - np.min(onset_envelope)
|
|
|
|
# Mypy does not realize that oenv is not None by now
|
|
# Max-scale with safe division
|
|
onset_envelope /= np.max(onset_envelope) + util.tiny(onset_envelope) # type: ignore
|
|
|
|
# help out mypy
|
|
assert onset_envelope is not None
|
|
|
|
# Do we have any onsets to grab?
|
|
if not onset_envelope.any() or not np.all(np.isfinite(onset_envelope)):
|
|
onsets = np.array([], dtype=int)
|
|
|
|
else:
|
|
# These parameter settings found by large-scale search
|
|
kwargs.setdefault("pre_max", 0.03 * sr // hop_length) # 30ms
|
|
kwargs.setdefault("post_max", 0.00 * sr // hop_length + 1) # 0ms
|
|
kwargs.setdefault("pre_avg", 0.10 * sr // hop_length) # 100ms
|
|
kwargs.setdefault("post_avg", 0.10 * sr // hop_length + 1) # 100ms
|
|
kwargs.setdefault("wait", 0.03 * sr // hop_length) # 30ms
|
|
kwargs.setdefault("delta", 0.07)
|
|
|
|
# Peak pick the onset envelope
|
|
onsets = util.peak_pick(onset_envelope, **kwargs)
|
|
|
|
# Optionally backtrack the events
|
|
if backtrack:
|
|
if energy is None:
|
|
energy = onset_envelope
|
|
assert energy is not None
|
|
onsets = onset_backtrack(onsets, energy)
|
|
|
|
if units == "frames":
|
|
pass
|
|
elif units == "samples":
|
|
onsets = core.frames_to_samples(onsets, hop_length=hop_length)
|
|
elif units == "time":
|
|
onsets = core.frames_to_time(onsets, hop_length=hop_length, sr=sr)
|
|
else:
|
|
raise ParameterError(f"Invalid unit type: {units}")
|
|
|
|
return onsets
|
|
|
|
|
|
def onset_strength(
|
|
*,
|
|
y: Optional[np.ndarray] = None,
|
|
sr: float = 22050,
|
|
S: Optional[np.ndarray] = None,
|
|
lag: int = 1,
|
|
max_size: int = 1,
|
|
ref: Optional[np.ndarray] = None,
|
|
detrend: bool = False,
|
|
center: bool = True,
|
|
feature: Optional[Callable] = None,
|
|
aggregate: Optional[Union[Callable, bool]] = None,
|
|
**kwargs: Any,
|
|
) -> np.ndarray:
|
|
"""Compute a spectral flux onset strength envelope.
|
|
|
|
Onset strength at time ``t`` is determined by::
|
|
|
|
mean_f max(0, S[f, t] - ref[f, t - lag])
|
|
|
|
where ``ref`` is ``S`` after local max filtering along the frequency
|
|
axis [#]_.
|
|
|
|
By default, if a time series ``y`` is provided, S will be the
|
|
log-power Mel spectrogram.
|
|
|
|
.. [#] Böck, Sebastian, and Gerhard Widmer.
|
|
"Maximum filter vibrato suppression for onset detection."
|
|
16th International Conference on Digital Audio Effects,
|
|
Maynooth, Ireland. 2013.
|
|
|
|
Parameters
|
|
----------
|
|
y : np.ndarray [shape=(..., n)]
|
|
audio time-series. Multi-channel is supported.
|
|
|
|
sr : number > 0 [scalar]
|
|
sampling rate of ``y``
|
|
|
|
S : np.ndarray [shape=(..., d, m)]
|
|
pre-computed (log-power) spectrogram
|
|
|
|
lag : int > 0
|
|
time lag for computing differences
|
|
|
|
max_size : int > 0
|
|
size (in frequency bins) of the local max filter.
|
|
set to `1` to disable filtering.
|
|
|
|
ref : None or np.ndarray [shape=(..., d, m)]
|
|
An optional pre-computed reference spectrum, of the same shape as ``S``.
|
|
If not provided, it will be computed from ``S``.
|
|
If provided, it will override any local max filtering governed by ``max_size``.
|
|
|
|
detrend : bool [scalar]
|
|
Filter the onset strength to remove the DC component
|
|
|
|
center : bool [scalar]
|
|
Shift the onset function by ``n_fft // (2 * hop_length)`` frames.
|
|
This corresponds to using a centered frame analysis in the short-time Fourier
|
|
transform.
|
|
|
|
feature : function
|
|
Function for computing time-series features, eg, scaled spectrograms.
|
|
By default, uses `librosa.feature.melspectrogram` with ``fmax=sr/2``
|
|
|
|
aggregate : function
|
|
Aggregation function to use when combining onsets
|
|
at different frequency bins.
|
|
|
|
Default: `np.mean`
|
|
|
|
**kwargs : additional keyword arguments
|
|
Additional parameters to ``feature()``, if ``S`` is not provided.
|
|
|
|
Returns
|
|
-------
|
|
onset_envelope : np.ndarray [shape=(..., m,)]
|
|
vector containing the onset strength envelope.
|
|
If the input contains multiple channels, then onset envelope is computed for each channel.
|
|
|
|
Raises
|
|
------
|
|
ParameterError
|
|
if neither ``(y, sr)`` nor ``S`` are provided
|
|
|
|
or if ``lag`` or ``max_size`` are not positive integers
|
|
|
|
See Also
|
|
--------
|
|
onset_detect
|
|
onset_strength_multi
|
|
|
|
Examples
|
|
--------
|
|
First, load some audio and plot the spectrogram
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
|
|
>>> D = np.abs(librosa.stft(y))
|
|
>>> times = librosa.times_like(D)
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
|
|
>>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max),
|
|
... y_axis='log', x_axis='time', ax=ax[0])
|
|
>>> ax[0].set(title='Power spectrogram')
|
|
>>> ax[0].label_outer()
|
|
|
|
Construct a standard onset function
|
|
|
|
>>> onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
|
>>> ax[1].plot(times, 2 + onset_env / onset_env.max(), alpha=0.8,
|
|
... label='Mean (mel)')
|
|
|
|
Median aggregation, and custom mel options
|
|
|
|
>>> onset_env = librosa.onset.onset_strength(y=y, sr=sr,
|
|
... aggregate=np.median,
|
|
... fmax=8000, n_mels=256)
|
|
>>> ax[1].plot(times, 1 + onset_env / onset_env.max(), alpha=0.8,
|
|
... label='Median (custom mel)')
|
|
|
|
Constant-Q spectrogram instead of Mel
|
|
|
|
>>> C = np.abs(librosa.cqt(y=y, sr=sr))
|
|
>>> onset_env = librosa.onset.onset_strength(sr=sr, S=librosa.amplitude_to_db(C, ref=np.max))
|
|
>>> ax[1].plot(times, onset_env / onset_env.max(), alpha=0.8,
|
|
... label='Mean (CQT)')
|
|
>>> ax[1].legend()
|
|
>>> ax[1].set(ylabel='Normalized strength', yticks=[])
|
|
"""
|
|
if aggregate is False:
|
|
raise ParameterError(
|
|
f"aggregate parameter cannot be False when computing full-spectrum onset strength."
|
|
)
|
|
|
|
odf_all = onset_strength_multi(
|
|
y=y,
|
|
sr=sr,
|
|
S=S,
|
|
lag=lag,
|
|
max_size=max_size,
|
|
ref=ref,
|
|
detrend=detrend,
|
|
center=center,
|
|
feature=feature,
|
|
aggregate=aggregate,
|
|
channels=None,
|
|
**kwargs,
|
|
)
|
|
|
|
return odf_all[..., 0, :]
|
|
|
|
|
|
def onset_backtrack(events: np.ndarray, energy: np.ndarray) -> np.ndarray:
|
|
"""Backtrack detected onset events to the nearest preceding local
|
|
minimum of an energy function.
|
|
|
|
This function can be used to roll back the timing of detected onsets
|
|
from a detected peak amplitude to the preceding minimum.
|
|
|
|
This is most useful when using onsets to determine slice points for
|
|
segmentation, as described by [#]_.
|
|
|
|
.. [#] Jehan, Tristan.
|
|
"Creating music by listening"
|
|
Doctoral dissertation
|
|
Massachusetts Institute of Technology, 2005.
|
|
|
|
Parameters
|
|
----------
|
|
events : np.ndarray, dtype=int
|
|
List of onset event frame indices, as computed by `onset_detect`
|
|
energy : np.ndarray, shape=(m,)
|
|
An energy function
|
|
|
|
Returns
|
|
-------
|
|
events_backtracked : np.ndarray, shape=events.shape
|
|
The input events matched to nearest preceding minima of ``energy``.
|
|
|
|
Examples
|
|
--------
|
|
Backtrack the events using the onset envelope
|
|
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
|
|
>>> oenv = librosa.onset.onset_strength(y=y, sr=sr)
|
|
>>> times = librosa.times_like(oenv)
|
|
>>> # Detect events without backtracking
|
|
>>> onset_raw = librosa.onset.onset_detect(onset_envelope=oenv,
|
|
... backtrack=False)
|
|
>>> onset_bt = librosa.onset.onset_backtrack(onset_raw, oenv)
|
|
|
|
Backtrack the events using the RMS values
|
|
|
|
>>> S = np.abs(librosa.stft(y=y))
|
|
>>> rms = librosa.feature.rms(S=S)
|
|
>>> onset_bt_rms = librosa.onset.onset_backtrack(onset_raw, rms[0])
|
|
|
|
Plot the results
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> fig, ax = plt.subplots(nrows=3, sharex=True)
|
|
>>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
|
|
... y_axis='log', x_axis='time', ax=ax[0])
|
|
>>> ax[0].label_outer()
|
|
>>> ax[1].plot(times, oenv, label='Onset strength')
|
|
>>> ax[1].vlines(librosa.frames_to_time(onset_raw), 0, oenv.max(), label='Raw onsets')
|
|
>>> ax[1].vlines(librosa.frames_to_time(onset_bt), 0, oenv.max(), label='Backtracked', color='r')
|
|
>>> ax[1].legend()
|
|
>>> ax[1].label_outer()
|
|
>>> ax[2].plot(times, rms[0], label='RMS')
|
|
>>> ax[2].vlines(librosa.frames_to_time(onset_bt_rms), 0, rms.max(), label='Backtracked (RMS)', color='r')
|
|
>>> ax[2].legend()
|
|
"""
|
|
# Find points where energy is non-increasing
|
|
# all points: energy[i] <= energy[i-1]
|
|
# tail points: energy[i] < energy[i+1]
|
|
minima = np.flatnonzero((energy[1:-1] <= energy[:-2]) & (energy[1:-1] < energy[2:]))
|
|
|
|
# Pad on a 0, just in case we have onsets with no preceding minimum
|
|
# Shift by one to account for slicing in minima detection
|
|
minima = util.fix_frames(1 + minima, x_min=0)
|
|
|
|
# Only match going left from the detected events
|
|
results: np.ndarray = minima[util.match_events(events, minima, right=False)]
|
|
return results
|
|
|
|
|
|
@cache(level=30)
|
|
def onset_strength_multi(
|
|
*,
|
|
y: Optional[np.ndarray] = None,
|
|
sr: float = 22050,
|
|
S: Optional[np.ndarray] = None,
|
|
n_fft: int = 2048,
|
|
hop_length: int = 512,
|
|
lag: int = 1,
|
|
max_size: int = 1,
|
|
ref: Optional[np.ndarray] = None,
|
|
detrend: bool = False,
|
|
center: bool = True,
|
|
feature: Optional[Callable] = None,
|
|
aggregate: Optional[Union[Callable, bool]] = None,
|
|
channels: Optional[Union[Sequence[int], Sequence[slice]]] = None,
|
|
**kwargs: Any,
|
|
) -> np.ndarray:
|
|
"""Compute a spectral flux onset strength envelope across multiple channels.
|
|
|
|
Onset strength for channel ``i`` at time ``t`` is determined by::
|
|
|
|
mean_{f in channels[i]} max(0, S[f, t+1] - S[f, t])
|
|
|
|
Parameters
|
|
----------
|
|
y : np.ndarray [shape=(..., n,)]
|
|
audio time-series. Multi-channel is supported.
|
|
|
|
sr : number > 0 [scalar]
|
|
sampling rate of ``y``
|
|
|
|
S : np.ndarray [shape=(..., d, m)]
|
|
pre-computed (log-power) spectrogram
|
|
|
|
n_fft : int > 0 [scalar]
|
|
FFT window size for use in ``feature()`` if ``S`` is not provided.
|
|
|
|
hop_length : int > 0 [scalar]
|
|
hop length for use in ``feature()`` if ``S`` is not provided.
|
|
|
|
lag : int > 0
|
|
time lag for computing differences
|
|
|
|
max_size : int > 0
|
|
size (in frequency bins) of the local max filter.
|
|
set to `1` to disable filtering.
|
|
|
|
ref : None or np.ndarray [shape=(d, m)]
|
|
An optional pre-computed reference spectrum, of the same shape as ``S``.
|
|
If not provided, it will be computed from ``S``.
|
|
If provided, it will override any local max filtering governed by ``max_size``.
|
|
|
|
detrend : bool [scalar]
|
|
Filter the onset strength to remove the DC component
|
|
|
|
center : bool [scalar]
|
|
Shift the onset function by ``n_fft // (2 * hop_length)`` frames.
|
|
This corresponds to using a centered frame analysis in the short-time Fourier
|
|
transform.
|
|
|
|
feature : function
|
|
Function for computing time-series features, eg, scaled spectrograms.
|
|
By default, uses `librosa.feature.melspectrogram` with ``fmax=sr/2``
|
|
|
|
Must support arguments: ``y, sr, n_fft, hop_length``
|
|
|
|
aggregate : function or False
|
|
Aggregation function to use when combining onsets
|
|
at different frequency bins.
|
|
|
|
If ``False``, then no aggregation is performed.
|
|
|
|
Default: `np.mean`
|
|
|
|
channels : list or None
|
|
Array of channel boundaries or slice objects.
|
|
If `None`, then a single channel is generated to span all bands.
|
|
|
|
**kwargs : additional keyword arguments
|
|
Additional parameters to ``feature()``, if ``S`` is not provided.
|
|
|
|
Returns
|
|
-------
|
|
onset_envelope : np.ndarray [shape=(..., n_channels, m)]
|
|
array containing the onset strength envelope for each specified channel
|
|
|
|
Raises
|
|
------
|
|
ParameterError
|
|
if neither ``(y, sr)`` nor ``S`` are provided
|
|
|
|
See Also
|
|
--------
|
|
onset_strength
|
|
|
|
Notes
|
|
-----
|
|
This function caches at level 30.
|
|
|
|
Examples
|
|
--------
|
|
First, load some audio and plot the spectrogram
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> y, sr = librosa.load(librosa.ex('choice'), duration=5)
|
|
>>> D = np.abs(librosa.stft(y))
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
|
|
>>> img1 = librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max),
|
|
... y_axis='log', x_axis='time', ax=ax[0])
|
|
>>> ax[0].set(title='Power spectrogram')
|
|
>>> ax[0].label_outer()
|
|
>>> fig.colorbar(img1, ax=[ax[0]], format="%+2.f dB")
|
|
|
|
Construct a standard onset function over four sub-bands
|
|
|
|
>>> onset_subbands = librosa.onset.onset_strength_multi(y=y, sr=sr,
|
|
... channels=[0, 32, 64, 96, 128])
|
|
>>> img2 = librosa.display.specshow(onset_subbands, x_axis='time', ax=ax[1])
|
|
>>> ax[1].set(ylabel='Sub-bands', title='Sub-band onset strength')
|
|
>>> fig.colorbar(img2, ax=[ax[1]])
|
|
"""
|
|
if feature is None:
|
|
feature = melspectrogram
|
|
kwargs.setdefault("fmax", 0.5 * sr)
|
|
|
|
if aggregate is None:
|
|
aggregate = np.mean
|
|
|
|
if not util.is_positive_int(lag):
|
|
raise ParameterError(f"lag={lag} must be a positive integer")
|
|
|
|
if not util.is_positive_int(max_size):
|
|
raise ParameterError(f"max_size={max_size} must be a positive integer")
|
|
|
|
# First, compute mel spectrogram
|
|
if S is None:
|
|
S = np.abs(feature(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length, **kwargs))
|
|
|
|
# Convert to dBs
|
|
S = core.power_to_db(S)
|
|
|
|
# Ensure that S is at least 2-d
|
|
S = np.atleast_2d(S)
|
|
|
|
# Compute the reference spectrogram.
|
|
# Efficiency hack: skip filtering step and pass by reference
|
|
# if max_size will produce a no-op.
|
|
if ref is None:
|
|
if max_size == 1:
|
|
ref = S
|
|
else:
|
|
ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=-2)
|
|
elif ref.shape != S.shape:
|
|
raise ParameterError(
|
|
f"Reference spectrum shape {ref.shape} must match input spectrum {S.shape}"
|
|
)
|
|
|
|
# Compute difference to the reference, spaced by lag
|
|
onset_env = S[..., lag:] - ref[..., :-lag]
|
|
|
|
# Discard negatives (decreasing amplitude)
|
|
onset_env = np.maximum(0.0, onset_env)
|
|
|
|
# Aggregate within channels
|
|
pad = True
|
|
if channels is None:
|
|
channels = [slice(None)]
|
|
else:
|
|
pad = False
|
|
|
|
if callable(aggregate):
|
|
onset_env = util.sync(
|
|
onset_env, channels, aggregate=aggregate, pad=pad, axis=-2
|
|
)
|
|
|
|
# compensate for lag
|
|
pad_width = lag
|
|
if center:
|
|
# Counter-act framing effects. Shift the onsets by n_fft / hop_length
|
|
pad_width += n_fft // (2 * hop_length)
|
|
|
|
padding = [(0, 0) for _ in onset_env.shape]
|
|
padding[-1] = (int(pad_width), 0)
|
|
onset_env = np.pad(onset_env, padding, mode="constant")
|
|
|
|
# remove the DC component
|
|
if detrend:
|
|
onset_env = scipy.signal.lfilter([1.0, -1.0], [1.0, -0.99], onset_env, axis=-1)
|
|
|
|
# Trim to match the input duration
|
|
if center:
|
|
onset_env = onset_env[..., : S.shape[-1]]
|
|
|
|
return onset_env
|