ai-content-maker/.venv/Lib/site-packages/matplotlib/tests/test_lines.py

441 lines
14 KiB
Python

"""
Tests specific to the lines module.
"""
import itertools
import platform
import timeit
from types import SimpleNamespace
from cycler import cycler
import numpy as np
from numpy.testing import assert_array_equal
import pytest
import matplotlib
import matplotlib as mpl
from matplotlib import _path
import matplotlib.lines as mlines
from matplotlib.markers import MarkerStyle
from matplotlib.path import Path
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
from matplotlib.testing.decorators import image_comparison, check_figures_equal
def test_segment_hits():
"""Test a problematic case."""
cx, cy = 553, 902
x, y = np.array([553., 553.]), np.array([95., 947.])
radius = 6.94
assert_array_equal(mlines.segment_hits(cx, cy, x, y, radius), [0])
# Runtimes on a loaded system are inherently flaky. Not so much that a rerun
# won't help, hopefully.
@pytest.mark.flaky(reruns=3)
def test_invisible_Line_rendering():
"""
GitHub issue #1256 identified a bug in Line.draw method
Despite visibility attribute set to False, the draw method was not
returning early enough and some pre-rendering code was executed
though not necessary.
Consequence was an excessive draw time for invisible Line instances
holding a large number of points (Npts> 10**6)
"""
# Creates big x and y data:
N = 10**7
x = np.linspace(0, 1, N)
y = np.random.normal(size=N)
# Create a plot figure:
fig = plt.figure()
ax = plt.subplot()
# Create a "big" Line instance:
l = mlines.Line2D(x, y)
l.set_visible(False)
# but don't add it to the Axis instance `ax`
# [here Interactive panning and zooming is pretty responsive]
# Time the canvas drawing:
t_no_line = min(timeit.repeat(fig.canvas.draw, number=1, repeat=3))
# (gives about 25 ms)
# Add the big invisible Line:
ax.add_line(l)
# [Now interactive panning and zooming is very slow]
# Time the canvas drawing:
t_invisible_line = min(timeit.repeat(fig.canvas.draw, number=1, repeat=3))
# gives about 290 ms for N = 10**7 pts
slowdown_factor = t_invisible_line / t_no_line
slowdown_threshold = 2 # trying to avoid false positive failures
assert slowdown_factor < slowdown_threshold
def test_set_line_coll_dash():
fig, ax = plt.subplots()
np.random.seed(0)
# Testing setting linestyles for line collections.
# This should not produce an error.
ax.contour(np.random.randn(20, 30), linestyles=[(0, (3, 3))])
def test_invalid_line_data():
with pytest.raises(RuntimeError, match='xdata must be'):
mlines.Line2D(0, [])
with pytest.raises(RuntimeError, match='ydata must be'):
mlines.Line2D([], 1)
line = mlines.Line2D([], [])
# when deprecation cycle is completed
# with pytest.raises(RuntimeError, match='x must be'):
with pytest.warns(mpl.MatplotlibDeprecationWarning):
line.set_xdata(0)
# with pytest.raises(RuntimeError, match='y must be'):
with pytest.warns(mpl.MatplotlibDeprecationWarning):
line.set_ydata(0)
@image_comparison(['line_dashes'], remove_text=True, tol=0.002)
def test_line_dashes():
# Tolerance introduced after reordering of floating-point operations
# Remove when regenerating the images
fig, ax = plt.subplots()
ax.plot(range(10), linestyle=(0, (3, 3)), lw=5)
def test_line_colors():
fig, ax = plt.subplots()
ax.plot(range(10), color='none')
ax.plot(range(10), color='r')
ax.plot(range(10), color='.3')
ax.plot(range(10), color=(1, 0, 0, 1))
ax.plot(range(10), color=(1, 0, 0))
fig.canvas.draw()
def test_valid_colors():
line = mlines.Line2D([], [])
with pytest.raises(ValueError):
line.set_color("foobar")
def test_linestyle_variants():
fig, ax = plt.subplots()
for ls in ["-", "solid", "--", "dashed",
"-.", "dashdot", ":", "dotted",
(0, None), (0, ()), (0, []), # gh-22930
]:
ax.plot(range(10), linestyle=ls)
fig.canvas.draw()
def test_valid_linestyles():
line = mlines.Line2D([], [])
with pytest.raises(ValueError):
line.set_linestyle('aardvark')
@image_comparison(['drawstyle_variants.png'], remove_text=True)
def test_drawstyle_variants():
fig, axs = plt.subplots(6)
dss = ["default", "steps-mid", "steps-pre", "steps-post", "steps", None]
# We want to check that drawstyles are properly handled even for very long
# lines (for which the subslice optimization is on); however, we need
# to zoom in so that the difference between the drawstyles is actually
# visible.
for ax, ds in zip(axs.flat, dss):
ax.plot(range(2000), drawstyle=ds)
ax.set(xlim=(0, 2), ylim=(0, 2))
@check_figures_equal(extensions=('png',))
def test_no_subslice_with_transform(fig_ref, fig_test):
ax = fig_ref.add_subplot()
x = np.arange(2000)
ax.plot(x + 2000, x)
ax = fig_test.add_subplot()
t = mtransforms.Affine2D().translate(2000.0, 0.0)
ax.plot(x, x, transform=t+ax.transData)
def test_valid_drawstyles():
line = mlines.Line2D([], [])
with pytest.raises(ValueError):
line.set_drawstyle('foobar')
def test_set_drawstyle():
x = np.linspace(0, 2*np.pi, 10)
y = np.sin(x)
fig, ax = plt.subplots()
line, = ax.plot(x, y)
line.set_drawstyle("steps-pre")
assert len(line.get_path().vertices) == 2*len(x)-1
line.set_drawstyle("default")
assert len(line.get_path().vertices) == len(x)
@image_comparison(
['line_collection_dashes'], remove_text=True, style='mpl20',
tol=0.65 if platform.machine() in ('aarch64', 'ppc64le', 's390x') else 0)
def test_set_line_coll_dash_image():
fig, ax = plt.subplots()
np.random.seed(0)
ax.contour(np.random.randn(20, 30), linestyles=[(0, (3, 3))])
@image_comparison(['marker_fill_styles.png'], remove_text=True)
def test_marker_fill_styles():
colors = itertools.cycle([[0, 0, 1], 'g', '#ff0000', 'c', 'm', 'y',
np.array([0, 0, 0])])
altcolor = 'lightgreen'
y = np.array([1, 1])
x = np.array([0, 9])
fig, ax = plt.subplots()
# This hard-coded list of markers correspond to an earlier iteration of
# MarkerStyle.filled_markers; the value of that attribute has changed but
# we kept the old value here to not regenerate the baseline image.
# Replace with mlines.Line2D.filled_markers when the image is regenerated.
for j, marker in enumerate("ov^<>8sp*hHDdPX"):
for i, fs in enumerate(mlines.Line2D.fillStyles):
color = next(colors)
ax.plot(j * 10 + x, y + i + .5 * (j % 2),
marker=marker,
markersize=20,
markerfacecoloralt=altcolor,
fillstyle=fs,
label=fs,
linewidth=5,
color=color,
markeredgecolor=color,
markeredgewidth=2)
ax.set_ylim([0, 7.5])
ax.set_xlim([-5, 155])
def test_markerfacecolor_fillstyle():
"""Test that markerfacecolor does not override fillstyle='none'."""
l, = plt.plot([1, 3, 2], marker=MarkerStyle('o', fillstyle='none'),
markerfacecolor='red')
assert l.get_fillstyle() == 'none'
assert l.get_markerfacecolor() == 'none'
@image_comparison(['scaled_lines'], style='default')
def test_lw_scaling():
th = np.linspace(0, 32)
fig, ax = plt.subplots()
lins_styles = ['dashed', 'dotted', 'dashdot']
cy = cycler(matplotlib.rcParams['axes.prop_cycle'])
for j, (ls, sty) in enumerate(zip(lins_styles, cy)):
for lw in np.linspace(.5, 10, 10):
ax.plot(th, j*np.ones(50) + .1 * lw, linestyle=ls, lw=lw, **sty)
def test_is_sorted_and_has_non_nan():
assert _path.is_sorted_and_has_non_nan(np.array([1, 2, 3]))
assert _path.is_sorted_and_has_non_nan(np.array([1, np.nan, 3]))
assert not _path.is_sorted_and_has_non_nan([3, 5] + [np.nan] * 100 + [0, 2])
# [2, 256] byteswapped:
assert not _path.is_sorted_and_has_non_nan(np.array([33554432, 65536], ">i4"))
n = 2 * mlines.Line2D._subslice_optim_min_size
plt.plot([np.nan] * n, range(n))
@check_figures_equal()
def test_step_markers(fig_test, fig_ref):
fig_test.subplots().step([0, 1], "-o")
fig_ref.subplots().plot([0, 0, 1], [0, 1, 1], "-o", markevery=[0, 2])
@pytest.mark.parametrize("parent", ["figure", "axes"])
@check_figures_equal(extensions=('png',))
def test_markevery(fig_test, fig_ref, parent):
np.random.seed(42)
x = np.linspace(0, 1, 14)
y = np.random.rand(len(x))
cases_test = [None, 4, (2, 5), [1, 5, 11],
[0, -1], slice(5, 10, 2),
np.arange(len(x))[y > 0.5],
0.3, (0.3, 0.4)]
cases_ref = ["11111111111111", "10001000100010", "00100001000010",
"01000100000100", "10000000000001", "00000101010000",
"01110001110110", "11011011011110", "01010011011101"]
if parent == "figure":
# float markevery ("relative to axes size") is not supported.
cases_test = cases_test[:-2]
cases_ref = cases_ref[:-2]
def add_test(x, y, *, markevery):
fig_test.add_artist(
mlines.Line2D(x, y, marker="o", markevery=markevery))
def add_ref(x, y, *, markevery):
fig_ref.add_artist(
mlines.Line2D(x, y, marker="o", markevery=markevery))
elif parent == "axes":
axs_test = iter(fig_test.subplots(3, 3).flat)
axs_ref = iter(fig_ref.subplots(3, 3).flat)
def add_test(x, y, *, markevery):
next(axs_test).plot(x, y, "-gD", markevery=markevery)
def add_ref(x, y, *, markevery):
next(axs_ref).plot(x, y, "-gD", markevery=markevery)
for case in cases_test:
add_test(x, y, markevery=case)
for case in cases_ref:
me = np.array(list(case)).astype(int).astype(bool)
add_ref(x, y, markevery=me)
def test_markevery_figure_line_unsupported_relsize():
fig = plt.figure()
fig.add_artist(mlines.Line2D([0, 1], [0, 1], marker="o", markevery=.5))
with pytest.raises(ValueError):
fig.canvas.draw()
def test_marker_as_markerstyle():
fig, ax = plt.subplots()
line, = ax.plot([2, 4, 3], marker=MarkerStyle("D"))
fig.canvas.draw()
assert line.get_marker() == "D"
# continue with smoke tests:
line.set_marker("s")
fig.canvas.draw()
line.set_marker(MarkerStyle("o"))
fig.canvas.draw()
# test Path roundtrip
triangle1 = Path._create_closed([[-1, -1], [1, -1], [0, 2]])
line2, = ax.plot([1, 3, 2], marker=MarkerStyle(triangle1), ms=22)
line3, = ax.plot([0, 2, 1], marker=triangle1, ms=22)
assert_array_equal(line2.get_marker().vertices, triangle1.vertices)
assert_array_equal(line3.get_marker().vertices, triangle1.vertices)
@image_comparison(['striped_line.png'], remove_text=True, style='mpl20')
def test_striped_lines():
rng = np.random.default_rng(19680801)
_, ax = plt.subplots()
ax.plot(rng.uniform(size=12), color='orange', gapcolor='blue',
linestyle='--', lw=5, label=' ')
ax.plot(rng.uniform(size=12), color='red', gapcolor='black',
linestyle=(0, (2, 5, 4, 2)), lw=5, label=' ', alpha=0.5)
ax.legend(handlelength=5)
@check_figures_equal()
def test_odd_dashes(fig_test, fig_ref):
fig_test.add_subplot().plot([1, 2], dashes=[1, 2, 3])
fig_ref.add_subplot().plot([1, 2], dashes=[1, 2, 3, 1, 2, 3])
def test_picking():
fig, ax = plt.subplots()
mouse_event = SimpleNamespace(x=fig.bbox.width // 2,
y=fig.bbox.height // 2 + 15)
# Default pickradius is 5, so event should not pick this line.
l0, = ax.plot([0, 1], [0, 1], picker=True)
found, indices = l0.contains(mouse_event)
assert not found
# But with a larger pickradius, this should be picked.
l1, = ax.plot([0, 1], [0, 1], picker=True, pickradius=20)
found, indices = l1.contains(mouse_event)
assert found
assert_array_equal(indices['ind'], [0])
# And if we modify the pickradius after creation, it should work as well.
l2, = ax.plot([0, 1], [0, 1], picker=True)
found, indices = l2.contains(mouse_event)
assert not found
l2.set_pickradius(20)
found, indices = l2.contains(mouse_event)
assert found
assert_array_equal(indices['ind'], [0])
@check_figures_equal()
def test_input_copy(fig_test, fig_ref):
t = np.arange(0, 6, 2)
l, = fig_test.add_subplot().plot(t, t, ".-")
t[:] = range(3)
# Trigger cache invalidation
l.set_drawstyle("steps")
fig_ref.add_subplot().plot([0, 2, 4], [0, 2, 4], ".-", drawstyle="steps")
@check_figures_equal(extensions=["png"])
def test_markevery_prop_cycle(fig_test, fig_ref):
"""Test that we can set markevery prop_cycle."""
cases = [None, 8, (30, 8), [16, 24, 30], [0, -1],
slice(100, 200, 3), 0.1, 0.3, 1.5,
(0.0, 0.1), (0.45, 0.1)]
cmap = mpl.colormaps['jet']
colors = cmap(np.linspace(0.2, 0.8, len(cases)))
x = np.linspace(-1, 1)
y = 5 * x**2
axs = fig_ref.add_subplot()
for i, markevery in enumerate(cases):
axs.plot(y - i, 'o-', markevery=markevery, color=colors[i])
matplotlib.rcParams['axes.prop_cycle'] = cycler(markevery=cases,
color=colors)
ax = fig_test.add_subplot()
for i, _ in enumerate(cases):
ax.plot(y - i, 'o-')
def test_axline_setters():
fig, ax = plt.subplots()
line1 = ax.axline((.1, .1), slope=0.6)
line2 = ax.axline((.1, .1), (.8, .4))
# Testing xy1, xy2 and slope setters.
# This should not produce an error.
line1.set_xy1(.2, .3)
line1.set_slope(2.4)
line2.set_xy1(.3, .2)
line2.set_xy2(.6, .8)
# Testing xy1, xy2 and slope getters.
# Should return the modified values.
assert line1.get_xy1() == (.2, .3)
assert line1.get_slope() == 2.4
assert line2.get_xy1() == (.3, .2)
assert line2.get_xy2() == (.6, .8)
# Testing setting xy2 and slope together.
# These test should raise a ValueError
with pytest.raises(ValueError,
match="Cannot set an 'xy2' value while 'slope' is set"):
line1.set_xy2(.2, .3)
with pytest.raises(ValueError,
match="Cannot set a 'slope' value while 'xy2' is set"):
line2.set_slope(3)