ai-content-maker/.venv/Lib/site-packages/matplotlib/tests/test_polar.py

457 lines
15 KiB
Python

import numpy as np
from numpy.testing import assert_allclose
import pytest
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib.testing.decorators import image_comparison, check_figures_equal
@image_comparison(['polar_axes'], style='default', tol=0.012)
def test_polar_annotations():
# You can specify the xypoint and the xytext in different positions and
# coordinate systems, and optionally turn on a connecting line and mark the
# point with a marker. Annotations work on polar axes too. In the example
# below, the xy point is in native coordinates (xycoords defaults to
# 'data'). For a polar axes, this is in (theta, radius) space. The text
# in this example is placed in the fractional figure coordinate system.
# Text keyword args like horizontal and vertical alignment are respected.
# Setup some data
r = np.arange(0.0, 1.0, 0.001)
theta = 2.0 * 2.0 * np.pi * r
fig = plt.figure()
ax = fig.add_subplot(polar=True)
line, = ax.plot(theta, r, color='#ee8d18', lw=3)
line, = ax.plot((0, 0), (0, 1), color="#0000ff", lw=1)
ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], 'o')
ax.annotate('a polar annotation',
xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords='figure fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='left',
verticalalignment='baseline',
)
ax.tick_params(axis='x', tick1On=True, tick2On=True, direction='out')
@image_comparison(['polar_coords'], style='default', remove_text=True,
tol=0.012)
def test_polar_coord_annotations():
# You can also use polar notation on a cartesian axes. Here the native
# coordinate system ('data') is cartesian, so you need to specify the
# xycoords and textcoords as 'polar' if you want to use (theta, radius).
el = mpl.patches.Ellipse((0, 0), 10, 20, facecolor='r', alpha=0.5)
fig = plt.figure()
ax = fig.add_subplot(aspect='equal')
ax.add_artist(el)
el.set_clip_box(ax.bbox)
ax.annotate('the top',
xy=(np.pi/2., 10.), # theta, radius
xytext=(np.pi/3, 20.), # theta, radius
xycoords='polar',
textcoords='polar',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='left',
verticalalignment='baseline',
clip_on=True, # clip to the axes bounding box
)
ax.set_xlim(-20, 20)
ax.set_ylim(-20, 20)
@image_comparison(['polar_alignment.png'])
def test_polar_alignment():
# Test changing the vertical/horizontal alignment of a polar graph.
angles = np.arange(0, 360, 90)
grid_values = [0, 0.2, 0.4, 0.6, 0.8, 1]
fig = plt.figure()
rect = [0.1, 0.1, 0.8, 0.8]
horizontal = fig.add_axes(rect, polar=True, label='horizontal')
horizontal.set_thetagrids(angles)
vertical = fig.add_axes(rect, polar=True, label='vertical')
vertical.patch.set_visible(False)
for i in range(2):
fig.axes[i].set_rgrids(
grid_values, angle=angles[i],
horizontalalignment='left', verticalalignment='top')
def test_polar_twice():
fig = plt.figure()
plt.polar([1, 2], [.1, .2])
plt.polar([3, 4], [.3, .4])
assert len(fig.axes) == 1, 'More than one polar axes created.'
@check_figures_equal()
def test_polar_wrap(fig_test, fig_ref):
ax = fig_test.add_subplot(projection="polar")
ax.plot(np.deg2rad([179, -179]), [0.2, 0.1])
ax.plot(np.deg2rad([2, -2]), [0.2, 0.1])
ax = fig_ref.add_subplot(projection="polar")
ax.plot(np.deg2rad([179, 181]), [0.2, 0.1])
ax.plot(np.deg2rad([2, 358]), [0.2, 0.1])
@check_figures_equal()
def test_polar_units_1(fig_test, fig_ref):
import matplotlib.testing.jpl_units as units
units.register()
xs = [30.0, 45.0, 60.0, 90.0]
ys = [1.0, 2.0, 3.0, 4.0]
plt.figure(fig_test.number)
plt.polar([x * units.deg for x in xs], ys)
ax = fig_ref.add_subplot(projection="polar")
ax.plot(np.deg2rad(xs), ys)
ax.set(xlabel="deg")
@check_figures_equal()
def test_polar_units_2(fig_test, fig_ref):
import matplotlib.testing.jpl_units as units
units.register()
xs = [30.0, 45.0, 60.0, 90.0]
xs_deg = [x * units.deg for x in xs]
ys = [1.0, 2.0, 3.0, 4.0]
ys_km = [y * units.km for y in ys]
plt.figure(fig_test.number)
# test {theta,r}units.
plt.polar(xs_deg, ys_km, thetaunits="rad", runits="km")
assert isinstance(plt.gca().xaxis.get_major_formatter(),
units.UnitDblFormatter)
ax = fig_ref.add_subplot(projection="polar")
ax.plot(np.deg2rad(xs), ys)
ax.xaxis.set_major_formatter(mpl.ticker.FuncFormatter("{:.12}".format))
ax.set(xlabel="rad", ylabel="km")
@image_comparison(['polar_rmin'], style='default')
def test_polar_rmin():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_rmax(2.0)
ax.set_rmin(0.5)
@image_comparison(['polar_negative_rmin'], style='default')
def test_polar_negative_rmin():
r = np.arange(-3.0, 0.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_rmax(0.0)
ax.set_rmin(-3.0)
@image_comparison(['polar_rorigin'], style='default')
def test_polar_rorigin():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_rmax(2.0)
ax.set_rmin(0.5)
ax.set_rorigin(0.0)
@image_comparison(['polar_invertedylim.png'], style='default')
def test_polar_invertedylim():
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.set_ylim(2, 0)
@image_comparison(['polar_invertedylim_rorigin.png'], style='default')
def test_polar_invertedylim_rorigin():
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.yaxis.set_inverted(True)
# Set the rlims to inverted (2, 0) without calling set_rlim, to check that
# viewlims are correctly unstaled before draw()ing.
ax.plot([0, 0], [0, 2], c="none")
ax.margins(0)
ax.set_rorigin(3)
@image_comparison(['polar_theta_position'], style='default')
def test_polar_theta_position():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_theta_zero_location("NW", 30)
ax.set_theta_direction('clockwise')
@image_comparison(['polar_rlabel_position'], style='default')
def test_polar_rlabel_position():
fig = plt.figure()
ax = fig.add_subplot(projection='polar')
ax.set_rlabel_position(315)
ax.tick_params(rotation='auto')
@image_comparison(['polar_theta_wedge'], style='default')
def test_polar_theta_limits():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
theta_mins = np.arange(15.0, 361.0, 90.0)
theta_maxs = np.arange(50.0, 361.0, 90.0)
DIRECTIONS = ('out', 'in', 'inout')
fig, axs = plt.subplots(len(theta_mins), len(theta_maxs),
subplot_kw={'polar': True},
figsize=(8, 6))
for i, start in enumerate(theta_mins):
for j, end in enumerate(theta_maxs):
ax = axs[i, j]
ax.plot(theta, r)
if start < end:
ax.set_thetamin(start)
ax.set_thetamax(end)
else:
# Plot with clockwise orientation instead.
ax.set_thetamin(end)
ax.set_thetamax(start)
ax.set_theta_direction('clockwise')
ax.tick_params(tick1On=True, tick2On=True,
direction=DIRECTIONS[i % len(DIRECTIONS)],
rotation='auto')
ax.yaxis.set_tick_params(label2On=True, rotation='auto')
ax.xaxis.get_major_locator().base.set_params( # backcompat
steps=[1, 2, 2.5, 5, 10])
@check_figures_equal(extensions=["png"])
def test_polar_rlim(fig_test, fig_ref):
ax = fig_test.subplots(subplot_kw={'polar': True})
ax.set_rlim(top=10)
ax.set_rlim(bottom=.5)
ax = fig_ref.subplots(subplot_kw={'polar': True})
ax.set_rmax(10.)
ax.set_rmin(.5)
@check_figures_equal(extensions=["png"])
def test_polar_rlim_bottom(fig_test, fig_ref):
ax = fig_test.subplots(subplot_kw={'polar': True})
ax.set_rlim(bottom=[.5, 10])
ax = fig_ref.subplots(subplot_kw={'polar': True})
ax.set_rmax(10.)
ax.set_rmin(.5)
def test_polar_rlim_zero():
ax = plt.figure().add_subplot(projection='polar')
ax.plot(np.arange(10), np.arange(10) + .01)
assert ax.get_ylim()[0] == 0
def test_polar_no_data():
plt.subplot(projection="polar")
ax = plt.gca()
assert ax.get_rmin() == 0 and ax.get_rmax() == 1
plt.close("all")
# Used to behave differently (by triggering an autoscale with no data).
plt.polar()
ax = plt.gca()
assert ax.get_rmin() == 0 and ax.get_rmax() == 1
def test_polar_default_log_lims():
plt.subplot(projection='polar')
ax = plt.gca()
ax.set_rscale('log')
assert ax.get_rmin() > 0
def test_polar_not_datalim_adjustable():
ax = plt.figure().add_subplot(projection="polar")
with pytest.raises(ValueError):
ax.set_adjustable("datalim")
def test_polar_gridlines():
fig = plt.figure()
ax = fig.add_subplot(polar=True)
# make all major grid lines lighter, only x grid lines set in 2.1.0
ax.grid(alpha=0.2)
# hide y tick labels, no effect in 2.1.0
plt.setp(ax.yaxis.get_ticklabels(), visible=False)
fig.canvas.draw()
assert ax.xaxis.majorTicks[0].gridline.get_alpha() == .2
assert ax.yaxis.majorTicks[0].gridline.get_alpha() == .2
def test_get_tightbbox_polar():
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
fig.canvas.draw()
bb = ax.get_tightbbox(fig.canvas.get_renderer())
assert_allclose(
bb.extents, [107.7778, 29.2778, 539.7847, 450.7222], rtol=1e-03)
@check_figures_equal(extensions=["png"])
def test_polar_interpolation_steps_constant_r(fig_test, fig_ref):
# Check that an extra half-turn doesn't make any difference -- modulo
# antialiasing, which we disable here.
p1 = (fig_test.add_subplot(121, projection="polar")
.bar([0], [1], 3*np.pi, edgecolor="none", antialiased=False))
p2 = (fig_test.add_subplot(122, projection="polar")
.bar([0], [1], -3*np.pi, edgecolor="none", antialiased=False))
p3 = (fig_ref.add_subplot(121, projection="polar")
.bar([0], [1], 2*np.pi, edgecolor="none", antialiased=False))
p4 = (fig_ref.add_subplot(122, projection="polar")
.bar([0], [1], -2*np.pi, edgecolor="none", antialiased=False))
@check_figures_equal(extensions=["png"])
def test_polar_interpolation_steps_variable_r(fig_test, fig_ref):
l, = fig_test.add_subplot(projection="polar").plot([0, np.pi/2], [1, 2])
l.get_path()._interpolation_steps = 100
fig_ref.add_subplot(projection="polar").plot(
np.linspace(0, np.pi/2, 101), np.linspace(1, 2, 101))
def test_thetalim_valid_invalid():
ax = plt.subplot(projection='polar')
ax.set_thetalim(0, 2 * np.pi) # doesn't raise.
ax.set_thetalim(thetamin=800, thetamax=440) # doesn't raise.
with pytest.raises(ValueError,
match='angle range must be less than a full circle'):
ax.set_thetalim(0, 3 * np.pi)
with pytest.raises(ValueError,
match='angle range must be less than a full circle'):
ax.set_thetalim(thetamin=800, thetamax=400)
def test_thetalim_args():
ax = plt.subplot(projection='polar')
ax.set_thetalim(0, 1)
assert tuple(np.radians((ax.get_thetamin(), ax.get_thetamax()))) == (0, 1)
ax.set_thetalim((2, 3))
assert tuple(np.radians((ax.get_thetamin(), ax.get_thetamax()))) == (2, 3)
def test_default_thetalocator():
# Ideally we would check AAAABBC, but the smallest axes currently puts a
# single tick at 150° because MaxNLocator doesn't have a way to accept 15°
# while rejecting 150°.
fig, axs = plt.subplot_mosaic(
"AAAABB.", subplot_kw={"projection": "polar"})
for ax in axs.values():
ax.set_thetalim(0, np.pi)
for ax in axs.values():
ticklocs = np.degrees(ax.xaxis.get_majorticklocs()).tolist()
assert pytest.approx(90) in ticklocs
assert pytest.approx(100) not in ticklocs
def test_axvspan():
ax = plt.subplot(projection="polar")
span = ax.axvspan(0, np.pi/4)
assert span.get_path()._interpolation_steps > 1
@check_figures_equal(extensions=["png"])
def test_remove_shared_polar(fig_ref, fig_test):
# Removing shared polar axes used to crash. Test removing them, keeping in
# both cases just the lower left axes of a grid to avoid running into a
# separate issue (now being fixed) of ticklabel visibility for shared axes.
axs = fig_ref.subplots(
2, 2, sharex=True, subplot_kw={"projection": "polar"})
for i in [0, 1, 3]:
axs.flat[i].remove()
axs = fig_test.subplots(
2, 2, sharey=True, subplot_kw={"projection": "polar"})
for i in [0, 1, 3]:
axs.flat[i].remove()
def test_shared_polar_keeps_ticklabels():
fig, axs = plt.subplots(
2, 2, subplot_kw={"projection": "polar"}, sharex=True, sharey=True)
fig.canvas.draw()
assert axs[0, 1].xaxis.majorTicks[0].get_visible()
assert axs[0, 1].yaxis.majorTicks[0].get_visible()
fig, axs = plt.subplot_mosaic(
"ab\ncd", subplot_kw={"projection": "polar"}, sharex=True, sharey=True)
fig.canvas.draw()
assert axs["b"].xaxis.majorTicks[0].get_visible()
assert axs["b"].yaxis.majorTicks[0].get_visible()
def test_axvline_axvspan_do_not_modify_rlims():
ax = plt.subplot(projection="polar")
ax.axvspan(0, 1)
ax.axvline(.5)
ax.plot([.1, .2])
assert ax.get_ylim() == (0, .2)
def test_cursor_precision():
ax = plt.subplot(projection="polar")
# Higher radii correspond to higher theta-precisions.
assert ax.format_coord(0, 0.005) == "θ=0.0π (0°), r=0.005"
assert ax.format_coord(0, .1) == "θ=0.00π (0°), r=0.100"
assert ax.format_coord(0, 1) == "θ=0.000π (0.0°), r=1.000"
assert ax.format_coord(1, 0.005) == "θ=0.3π (57°), r=0.005"
assert ax.format_coord(1, .1) == "θ=0.32π (57°), r=0.100"
assert ax.format_coord(1, 1) == "θ=0.318π (57.3°), r=1.000"
assert ax.format_coord(2, 0.005) == "θ=0.6π (115°), r=0.005"
assert ax.format_coord(2, .1) == "θ=0.64π (115°), r=0.100"
assert ax.format_coord(2, 1) == "θ=0.637π (114.6°), r=1.000"
@image_comparison(['polar_log.png'], style='default')
def test_polar_log():
fig = plt.figure()
ax = fig.add_subplot(polar=True)
ax.set_rscale('log')
ax.set_rlim(1, 1000)
n = 100
ax.plot(np.linspace(0, 2 * np.pi, n), np.logspace(0, 2, n))
def test_polar_neg_theta_lims():
fig = plt.figure()
ax = fig.add_subplot(projection='polar')
ax.set_thetalim(-np.pi, np.pi)
labels = [l.get_text() for l in ax.xaxis.get_ticklabels()]
assert labels == ['-180°', '-135°', '-90°', '-45°', '', '45°', '90°', '135°']