ai-content-maker/.venv/Lib/site-packages/mpl_toolkits/axes_grid1/axes_divider.py

695 lines
24 KiB
Python

"""
Helper classes to adjust the positions of multiple axes at drawing time.
"""
import functools
import numpy as np
import matplotlib as mpl
from matplotlib import _api
from matplotlib.gridspec import SubplotSpec
import matplotlib.transforms as mtransforms
from . import axes_size as Size
class Divider:
"""
An Axes positioning class.
The divider is initialized with lists of horizontal and vertical sizes
(:mod:`mpl_toolkits.axes_grid1.axes_size`) based on which a given
rectangular area will be divided.
The `new_locator` method then creates a callable object
that can be used as the *axes_locator* of the axes.
"""
def __init__(self, fig, pos, horizontal, vertical,
aspect=None, anchor="C"):
"""
Parameters
----------
fig : Figure
pos : tuple of 4 floats
Position of the rectangle that will be divided.
horizontal : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
Sizes for horizontal division.
vertical : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
Sizes for vertical division.
aspect : bool, optional
Whether overall rectangular area is reduced so that the relative
part of the horizontal and vertical scales have the same scale.
anchor : (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', \
'NW', 'W'}, default: 'C'
Placement of the reduced rectangle, when *aspect* is True.
"""
self._fig = fig
self._pos = pos
self._horizontal = horizontal
self._vertical = vertical
self._anchor = anchor
self.set_anchor(anchor)
self._aspect = aspect
self._xrefindex = 0
self._yrefindex = 0
self._locator = None
def get_horizontal_sizes(self, renderer):
return np.array([s.get_size(renderer) for s in self.get_horizontal()])
def get_vertical_sizes(self, renderer):
return np.array([s.get_size(renderer) for s in self.get_vertical()])
def set_position(self, pos):
"""
Set the position of the rectangle.
Parameters
----------
pos : tuple of 4 floats
position of the rectangle that will be divided
"""
self._pos = pos
def get_position(self):
"""Return the position of the rectangle."""
return self._pos
def set_anchor(self, anchor):
"""
Parameters
----------
anchor : (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', \
'NW', 'W'}
Either an (*x*, *y*) pair of relative coordinates (0 is left or
bottom, 1 is right or top), 'C' (center), or a cardinal direction
('SW', southwest, is bottom left, etc.).
See Also
--------
.Axes.set_anchor
"""
if isinstance(anchor, str):
_api.check_in_list(mtransforms.Bbox.coefs, anchor=anchor)
elif not isinstance(anchor, (tuple, list)) or len(anchor) != 2:
raise TypeError("anchor must be str or 2-tuple")
self._anchor = anchor
def get_anchor(self):
"""Return the anchor."""
return self._anchor
def get_subplotspec(self):
return None
def set_horizontal(self, h):
"""
Parameters
----------
h : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
sizes for horizontal division
"""
self._horizontal = h
def get_horizontal(self):
"""Return horizontal sizes."""
return self._horizontal
def set_vertical(self, v):
"""
Parameters
----------
v : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
sizes for vertical division
"""
self._vertical = v
def get_vertical(self):
"""Return vertical sizes."""
return self._vertical
def set_aspect(self, aspect=False):
"""
Parameters
----------
aspect : bool
"""
self._aspect = aspect
def get_aspect(self):
"""Return aspect."""
return self._aspect
def set_locator(self, _locator):
self._locator = _locator
def get_locator(self):
return self._locator
def get_position_runtime(self, ax, renderer):
if self._locator is None:
return self.get_position()
else:
return self._locator(ax, renderer).bounds
@staticmethod
def _calc_k(sizes, total):
# sizes is a (n, 2) array of (rel_size, abs_size); this method finds
# the k factor such that sum(rel_size * k + abs_size) == total.
rel_sum, abs_sum = sizes.sum(0)
return (total - abs_sum) / rel_sum if rel_sum else 0
@staticmethod
def _calc_offsets(sizes, k):
# Apply k factors to (n, 2) sizes array of (rel_size, abs_size); return
# the resulting cumulative offset positions.
return np.cumsum([0, *(sizes @ [k, 1])])
def new_locator(self, nx, ny, nx1=None, ny1=None):
"""
Return an axes locator callable for the specified cell.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise, location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
if nx1 is None:
nx1 = nx + 1
if ny1 is None:
ny1 = ny + 1
# append_size("left") adds a new size at the beginning of the
# horizontal size lists; this shift transforms e.g.
# new_locator(nx=2, ...) into effectively new_locator(nx=3, ...). To
# take that into account, instead of recording nx, we record
# nx-self._xrefindex, where _xrefindex is shifted by 1 by each
# append_size("left"), and re-add self._xrefindex back to nx in
# _locate, when the actual axes position is computed. Ditto for y.
xref = self._xrefindex
yref = self._yrefindex
locator = functools.partial(
self._locate, nx - xref, ny - yref, nx1 - xref, ny1 - yref)
locator.get_subplotspec = self.get_subplotspec
return locator
@_api.deprecated(
"3.8", alternative="divider.new_locator(...)(ax, renderer)")
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Implementation of ``divider.new_locator().__call__``.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the cell. When *nx1* is
None, a single *nx*-th column is specified. Otherwise, the
location of columns spanning between *nx* to *nx1* (but excluding
*nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
xref = self._xrefindex
yref = self._yrefindex
return self._locate(
nx - xref, (nx + 1 if nx1 is None else nx1) - xref,
ny - yref, (ny + 1 if ny1 is None else ny1) - yref,
axes, renderer)
def _locate(self, nx, ny, nx1, ny1, axes, renderer):
"""
Implementation of ``divider.new_locator().__call__``.
The axes locator callable returned by ``new_locator()`` is created as
a `functools.partial` of this method with *nx*, *ny*, *nx1*, and *ny1*
specifying the requested cell.
"""
nx += self._xrefindex
nx1 += self._xrefindex
ny += self._yrefindex
ny1 += self._yrefindex
fig_w, fig_h = self._fig.bbox.size / self._fig.dpi
x, y, w, h = self.get_position_runtime(axes, renderer)
hsizes = self.get_horizontal_sizes(renderer)
vsizes = self.get_vertical_sizes(renderer)
k_h = self._calc_k(hsizes, fig_w * w)
k_v = self._calc_k(vsizes, fig_h * h)
if self.get_aspect():
k = min(k_h, k_v)
ox = self._calc_offsets(hsizes, k)
oy = self._calc_offsets(vsizes, k)
ww = (ox[-1] - ox[0]) / fig_w
hh = (oy[-1] - oy[0]) / fig_h
pb = mtransforms.Bbox.from_bounds(x, y, w, h)
pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
x0, y0 = pb1.anchored(self.get_anchor(), pb).p0
else:
ox = self._calc_offsets(hsizes, k_h)
oy = self._calc_offsets(vsizes, k_v)
x0, y0 = x, y
if nx1 is None:
nx1 = -1
if ny1 is None:
ny1 = -1
x1, w1 = x0 + ox[nx] / fig_w, (ox[nx1] - ox[nx]) / fig_w
y1, h1 = y0 + oy[ny] / fig_h, (oy[ny1] - oy[ny]) / fig_h
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
def append_size(self, position, size):
_api.check_in_list(["left", "right", "bottom", "top"],
position=position)
if position == "left":
self._horizontal.insert(0, size)
self._xrefindex += 1
elif position == "right":
self._horizontal.append(size)
elif position == "bottom":
self._vertical.insert(0, size)
self._yrefindex += 1
else: # 'top'
self._vertical.append(size)
def add_auto_adjustable_area(self, use_axes, pad=0.1, adjust_dirs=None):
"""
Add auto-adjustable padding around *use_axes* to take their decorations
(title, labels, ticks, ticklabels) into account during layout.
Parameters
----------
use_axes : `~matplotlib.axes.Axes` or list of `~matplotlib.axes.Axes`
The Axes whose decorations are taken into account.
pad : float, default: 0.1
Additional padding in inches.
adjust_dirs : list of {"left", "right", "bottom", "top"}, optional
The sides where padding is added; defaults to all four sides.
"""
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
for d in adjust_dirs:
self.append_size(d, Size._AxesDecorationsSize(use_axes, d) + pad)
@_api.deprecated("3.8")
class AxesLocator:
"""
A callable object which returns the position and size of a given
`.AxesDivider` cell.
"""
def __init__(self, axes_divider, nx, ny, nx1=None, ny1=None):
"""
Parameters
----------
axes_divider : `~mpl_toolkits.axes_grid1.axes_divider.AxesDivider`
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise, location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
self._axes_divider = axes_divider
_xrefindex = axes_divider._xrefindex
_yrefindex = axes_divider._yrefindex
self._nx, self._ny = nx - _xrefindex, ny - _yrefindex
if nx1 is None:
nx1 = len(self._axes_divider)
if ny1 is None:
ny1 = len(self._axes_divider[0])
self._nx1 = nx1 - _xrefindex
self._ny1 = ny1 - _yrefindex
def __call__(self, axes, renderer):
_xrefindex = self._axes_divider._xrefindex
_yrefindex = self._axes_divider._yrefindex
return self._axes_divider.locate(self._nx + _xrefindex,
self._ny + _yrefindex,
self._nx1 + _xrefindex,
self._ny1 + _yrefindex,
axes,
renderer)
def get_subplotspec(self):
return self._axes_divider.get_subplotspec()
class SubplotDivider(Divider):
"""
The Divider class whose rectangle area is specified as a subplot geometry.
"""
def __init__(self, fig, *args, horizontal=None, vertical=None,
aspect=None, anchor='C'):
"""
Parameters
----------
fig : `~matplotlib.figure.Figure`
*args : tuple (*nrows*, *ncols*, *index*) or int
The array of subplots in the figure has dimensions ``(nrows,
ncols)``, and *index* is the index of the subplot being created.
*index* starts at 1 in the upper left corner and increases to the
right.
If *nrows*, *ncols*, and *index* are all single digit numbers, then
*args* can be passed as a single 3-digit number (e.g. 234 for
(2, 3, 4)).
horizontal : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`, optional
Sizes for horizontal division.
vertical : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`, optional
Sizes for vertical division.
aspect : bool, optional
Whether overall rectangular area is reduced so that the relative
part of the horizontal and vertical scales have the same scale.
anchor : (float, float) or {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', \
'NW', 'W'}, default: 'C'
Placement of the reduced rectangle, when *aspect* is True.
"""
self.figure = fig
super().__init__(fig, [0, 0, 1, 1],
horizontal=horizontal or [], vertical=vertical or [],
aspect=aspect, anchor=anchor)
self.set_subplotspec(SubplotSpec._from_subplot_args(fig, args))
def get_position(self):
"""Return the bounds of the subplot box."""
return self.get_subplotspec().get_position(self.figure).bounds
def get_subplotspec(self):
"""Get the SubplotSpec instance."""
return self._subplotspec
def set_subplotspec(self, subplotspec):
"""Set the SubplotSpec instance."""
self._subplotspec = subplotspec
self.set_position(subplotspec.get_position(self.figure))
class AxesDivider(Divider):
"""
Divider based on the preexisting axes.
"""
def __init__(self, axes, xref=None, yref=None):
"""
Parameters
----------
axes : :class:`~matplotlib.axes.Axes`
xref
yref
"""
self._axes = axes
if xref is None:
self._xref = Size.AxesX(axes)
else:
self._xref = xref
if yref is None:
self._yref = Size.AxesY(axes)
else:
self._yref = yref
super().__init__(fig=axes.get_figure(), pos=None,
horizontal=[self._xref], vertical=[self._yref],
aspect=None, anchor="C")
def _get_new_axes(self, *, axes_class=None, **kwargs):
axes = self._axes
if axes_class is None:
axes_class = type(axes)
return axes_class(axes.get_figure(), axes.get_position(original=True),
**kwargs)
def new_horizontal(self, size, pad=None, pack_start=False, **kwargs):
"""
Helper method for ``append_axes("left")`` and ``append_axes("right")``.
See the documentation of `append_axes` for more details.
:meta private:
"""
if pad is None:
pad = mpl.rcParams["figure.subplot.wspace"] * self._xref
pos = "left" if pack_start else "right"
if pad:
if not isinstance(pad, Size._Base):
pad = Size.from_any(pad, fraction_ref=self._xref)
self.append_size(pos, pad)
if not isinstance(size, Size._Base):
size = Size.from_any(size, fraction_ref=self._xref)
self.append_size(pos, size)
locator = self.new_locator(
nx=0 if pack_start else len(self._horizontal) - 1,
ny=self._yrefindex)
ax = self._get_new_axes(**kwargs)
ax.set_axes_locator(locator)
return ax
def new_vertical(self, size, pad=None, pack_start=False, **kwargs):
"""
Helper method for ``append_axes("top")`` and ``append_axes("bottom")``.
See the documentation of `append_axes` for more details.
:meta private:
"""
if pad is None:
pad = mpl.rcParams["figure.subplot.hspace"] * self._yref
pos = "bottom" if pack_start else "top"
if pad:
if not isinstance(pad, Size._Base):
pad = Size.from_any(pad, fraction_ref=self._yref)
self.append_size(pos, pad)
if not isinstance(size, Size._Base):
size = Size.from_any(size, fraction_ref=self._yref)
self.append_size(pos, size)
locator = self.new_locator(
nx=self._xrefindex,
ny=0 if pack_start else len(self._vertical) - 1)
ax = self._get_new_axes(**kwargs)
ax.set_axes_locator(locator)
return ax
def append_axes(self, position, size, pad=None, *, axes_class=None,
**kwargs):
"""
Add a new axes on a given side of the main axes.
Parameters
----------
position : {"left", "right", "bottom", "top"}
Where the new axes is positioned relative to the main axes.
size : :mod:`~mpl_toolkits.axes_grid1.axes_size` or float or str
The axes width or height. float or str arguments are interpreted
as ``axes_size.from_any(size, AxesX(<main_axes>))`` for left or
right axes, and likewise with ``AxesY`` for bottom or top axes.
pad : :mod:`~mpl_toolkits.axes_grid1.axes_size` or float or str
Padding between the axes. float or str arguments are interpreted
as for *size*. Defaults to :rc:`figure.subplot.wspace` times the
main Axes width (left or right axes) or :rc:`figure.subplot.hspace`
times the main Axes height (bottom or top axes).
axes_class : subclass type of `~.axes.Axes`, optional
The type of the new axes. Defaults to the type of the main axes.
**kwargs
All extra keywords arguments are passed to the created axes.
"""
create_axes, pack_start = _api.check_getitem({
"left": (self.new_horizontal, True),
"right": (self.new_horizontal, False),
"bottom": (self.new_vertical, True),
"top": (self.new_vertical, False),
}, position=position)
ax = create_axes(
size, pad, pack_start=pack_start, axes_class=axes_class, **kwargs)
self._fig.add_axes(ax)
return ax
def get_aspect(self):
if self._aspect is None:
aspect = self._axes.get_aspect()
if aspect == "auto":
return False
else:
return True
else:
return self._aspect
def get_position(self):
if self._pos is None:
bbox = self._axes.get_position(original=True)
return bbox.bounds
else:
return self._pos
def get_anchor(self):
if self._anchor is None:
return self._axes.get_anchor()
else:
return self._anchor
def get_subplotspec(self):
return self._axes.get_subplotspec()
# Helper for HBoxDivider/VBoxDivider.
# The variable names are written for a horizontal layout, but the calculations
# work identically for vertical layouts.
def _locate(x, y, w, h, summed_widths, equal_heights, fig_w, fig_h, anchor):
total_width = fig_w * w
max_height = fig_h * h
# Determine the k factors.
n = len(equal_heights)
eq_rels, eq_abss = equal_heights.T
sm_rels, sm_abss = summed_widths.T
A = np.diag([*eq_rels, 0])
A[:n, -1] = -1
A[-1, :-1] = sm_rels
B = [*(-eq_abss), total_width - sm_abss.sum()]
# A @ K = B: This finds factors {k_0, ..., k_{N-1}, H} so that
# eq_rel_i * k_i + eq_abs_i = H for all i: all axes have the same height
# sum(sm_rel_i * k_i + sm_abs_i) = total_width: fixed total width
# (foo_rel_i * k_i + foo_abs_i will end up being the size of foo.)
*karray, height = np.linalg.solve(A, B)
if height > max_height: # Additionally, upper-bound the height.
karray = (max_height - eq_abss) / eq_rels
# Compute the offsets corresponding to these factors.
ox = np.cumsum([0, *(sm_rels * karray + sm_abss)])
ww = (ox[-1] - ox[0]) / fig_w
h0_rel, h0_abs = equal_heights[0]
hh = (karray[0]*h0_rel + h0_abs) / fig_h
pb = mtransforms.Bbox.from_bounds(x, y, w, h)
pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
x0, y0 = pb1.anchored(anchor, pb).p0
return x0, y0, ox, hh
class HBoxDivider(SubplotDivider):
"""
A `.SubplotDivider` for laying out axes horizontally, while ensuring that
they have equal heights.
Examples
--------
.. plot:: gallery/axes_grid1/demo_axes_hbox_divider.py
"""
def new_locator(self, nx, nx1=None):
"""
Create an axes locator callable for the specified cell.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise, location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
"""
return super().new_locator(nx, 0, nx1, 0)
def _locate(self, nx, ny, nx1, ny1, axes, renderer):
# docstring inherited
nx += self._xrefindex
nx1 += self._xrefindex
fig_w, fig_h = self._fig.bbox.size / self._fig.dpi
x, y, w, h = self.get_position_runtime(axes, renderer)
summed_ws = self.get_horizontal_sizes(renderer)
equal_hs = self.get_vertical_sizes(renderer)
x0, y0, ox, hh = _locate(
x, y, w, h, summed_ws, equal_hs, fig_w, fig_h, self.get_anchor())
if nx1 is None:
nx1 = -1
x1, w1 = x0 + ox[nx] / fig_w, (ox[nx1] - ox[nx]) / fig_w
y1, h1 = y0, hh
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
class VBoxDivider(SubplotDivider):
"""
A `.SubplotDivider` for laying out axes vertically, while ensuring that
they have equal widths.
"""
def new_locator(self, ny, ny1=None):
"""
Create an axes locator callable for the specified cell.
Parameters
----------
ny, ny1 : int
Integers specifying the row-position of the
cell. When *ny1* is None, a single *ny*-th row is
specified. Otherwise, location of rows spanning between *ny*
to *ny1* (but excluding *ny1*-th row) is specified.
"""
return super().new_locator(0, ny, 0, ny1)
def _locate(self, nx, ny, nx1, ny1, axes, renderer):
# docstring inherited
ny += self._yrefindex
ny1 += self._yrefindex
fig_w, fig_h = self._fig.bbox.size / self._fig.dpi
x, y, w, h = self.get_position_runtime(axes, renderer)
summed_hs = self.get_vertical_sizes(renderer)
equal_ws = self.get_horizontal_sizes(renderer)
y0, x0, oy, ww = _locate(
y, x, h, w, summed_hs, equal_ws, fig_h, fig_w, self.get_anchor())
if ny1 is None:
ny1 = -1
x1, w1 = x0, ww
y1, h1 = y0 + oy[ny] / fig_h, (oy[ny1] - oy[ny]) / fig_h
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
def make_axes_locatable(axes):
divider = AxesDivider(axes)
locator = divider.new_locator(nx=0, ny=0)
axes.set_axes_locator(locator)
return divider
def make_axes_area_auto_adjustable(
ax, use_axes=None, pad=0.1, adjust_dirs=None):
"""
Add auto-adjustable padding around *ax* to take its decorations (title,
labels, ticks, ticklabels) into account during layout, using
`.Divider.add_auto_adjustable_area`.
By default, padding is determined from the decorations of *ax*.
Pass *use_axes* to consider the decorations of other Axes instead.
"""
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
divider = make_axes_locatable(ax)
if use_axes is None:
use_axes = ax
divider.add_auto_adjustable_area(use_axes=use_axes, pad=pad,
adjust_dirs=adjust_dirs)