ai-content-maker/.venv/Lib/site-packages/mpmath/functions/qfunctions.py

281 lines
7.5 KiB
Python

from .functions import defun, defun_wrapped
@defun
def qp(ctx, a, q=None, n=None, **kwargs):
r"""
Evaluates the q-Pochhammer symbol (or q-rising factorial)
.. math ::
(a; q)_n = \prod_{k=0}^{n-1} (1-a q^k)
where `n = \infty` is permitted if `|q| < 1`. Called with two arguments,
``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)``
computes `(q;q)_{\infty}`. The special case
.. math ::
\phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) =
\sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2}
is also known as the Euler function, or (up to a factor `q^{-1/24}`)
the Dedekind eta function.
**Examples**
If `n` is a positive integer, the function amounts to a finite product::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> qp(2,3,5)
-725305.0
>>> fprod(1-2*3**k for k in range(5))
-725305.0
>>> qp(2,3,0)
1.0
Complex arguments are allowed::
>>> qp(2-1j, 0.75j)
(0.4628842231660149089976379 + 4.481821753552703090628793j)
The regular Pochhammer symbol `(a)_n` is obtained in the
following limit as `q \to 1`::
>>> a, n = 4, 7
>>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1)
604800.0
>>> rf(a,n)
604800.0
The Taylor series of the reciprocal Euler function gives
the partition function `P(n)`, i.e. the number of ways of writing
`n` as a sum of positive integers::
>>> taylor(lambda q: 1/qp(q), 0, 10)
[1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0]
Special values include::
>>> qp(0)
1.0
>>> findroot(diffun(qp), -0.4) # location of maximum
-0.4112484791779547734440257
>>> qp(_)
1.228348867038575112586878
The q-Pochhammer symbol is related to the Jacobi theta functions.
For example, the following identity holds::
>>> q = mpf(0.5) # arbitrary
>>> qp(q)
0.2887880950866024212788997
>>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6))
0.2887880950866024212788997
"""
a = ctx.convert(a)
if n is None:
n = ctx.inf
else:
n = ctx.convert(n)
if n < 0:
raise ValueError("n cannot be negative")
if q is None:
q = a
else:
q = ctx.convert(q)
if n == 0:
return ctx.one + 0*(a+q)
infinite = (n == ctx.inf)
same = (a == q)
if infinite:
if abs(q) >= 1:
if same and (q == -1 or q == 1):
return ctx.zero * q
raise ValueError("q-function only defined for |q| < 1")
elif q == 0:
return ctx.one - a
maxterms = kwargs.get('maxterms', 50*ctx.prec)
if infinite and same:
# Euler's pentagonal theorem
def terms():
t = 1
yield t
k = 1
x1 = q
x2 = q**2
while 1:
yield (-1)**k * x1
yield (-1)**k * x2
x1 *= q**(3*k+1)
x2 *= q**(3*k+2)
k += 1
if k > maxterms:
raise ctx.NoConvergence
return ctx.sum_accurately(terms)
# return ctx.nprod(lambda k: 1-a*q**k, [0,n-1])
def factors():
k = 0
r = ctx.one
while 1:
yield 1 - a*r
r *= q
k += 1
if k >= n:
return
if k > maxterms:
raise ctx.NoConvergence
return ctx.mul_accurately(factors)
@defun_wrapped
def qgamma(ctx, z, q, **kwargs):
r"""
Evaluates the q-gamma function
.. math ::
\Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}.
**Examples**
Evaluation for real and complex arguments::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> qgamma(4,0.75)
4.046875
>>> qgamma(6,6)
121226245.0
>>> qgamma(3+4j, 0.5j)
(0.1663082382255199834630088 + 0.01952474576025952984418217j)
The q-gamma function satisfies a functional equation similar
to that of the ordinary gamma function::
>>> q = mpf(0.25)
>>> z = mpf(2.5)
>>> qgamma(z+1,q)
1.428277424823760954685912
>>> (1-q**z)/(1-q)*qgamma(z,q)
1.428277424823760954685912
"""
if abs(q) > 1:
return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5)
return ctx.qp(q, q, None, **kwargs) / \
ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z)
@defun_wrapped
def qfac(ctx, z, q, **kwargs):
r"""
Evaluates the q-factorial,
.. math ::
[n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})
or more generally
.. math ::
[z]_q! = \frac{(q;q)_z}{(1-q)^z}.
**Examples**
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> qfac(0,0)
1.0
>>> qfac(4,3)
2080.0
>>> qfac(5,6)
121226245.0
>>> qfac(1+1j, 2+1j)
(0.4370556551322672478613695 + 0.2609739839216039203708921j)
"""
if ctx.isint(z) and ctx._re(z) > 0:
n = int(ctx._re(z))
return ctx.qp(q, q, n, **kwargs) / (1-q)**n
return ctx.qgamma(z+1, q, **kwargs)
@defun
def qhyper(ctx, a_s, b_s, q, z, **kwargs):
r"""
Evaluates the basic hypergeometric series or hypergeometric q-series
.. math ::
\,_r\phi_s \left[\begin{matrix}
a_1 & a_2 & \ldots & a_r \\
b_1 & b_2 & \ldots & b_s
\end{matrix} ; q,z \right] =
\sum_{n=0}^\infty
\frac{(a_1;q)_n, \ldots, (a_r;q)_n}
{(b_1;q)_n, \ldots, (b_s;q)_n}
\left((-1)^n q^{n\choose 2}\right)^{1+s-r}
\frac{z^n}{(q;q)_n}
where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`).
**Examples**
Evaluation works for real and complex arguments::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> qhyper([0.5], [2.25], 0.25, 4)
-0.1975849091263356009534385
>>> qhyper([0.5], [2.25], 0.25-0.25j, 4)
(2.806330244925716649839237 + 3.568997623337943121769938j)
>>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j)
(9.112885171773400017270226 - 1.272756997166375050700388j)
Comparing with a summation of the defining series, using
:func:`~mpmath.nsum`::
>>> b, q, z = 3, 0.25, 0.5
>>> qhyper([], [b], q, z)
0.6221136748254495583228324
>>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf])
0.6221136748254495583228324
"""
#a_s = [ctx._convert_param(a)[0] for a in a_s]
#b_s = [ctx._convert_param(b)[0] for b in b_s]
#q = ctx._convert_param(q)[0]
a_s = [ctx.convert(a) for a in a_s]
b_s = [ctx.convert(b) for b in b_s]
q = ctx.convert(q)
z = ctx.convert(z)
r = len(a_s)
s = len(b_s)
d = 1+s-r
maxterms = kwargs.get('maxterms', 50*ctx.prec)
def terms():
t = ctx.one
yield t
qk = 1
k = 0
x = 1
while 1:
for a in a_s:
p = 1 - a*qk
t *= p
for b in b_s:
p = 1 - b*qk
if not p:
raise ValueError
t /= p
t *= z
x *= (-1)**d * qk ** d
qk *= q
t /= (1 - qk)
k += 1
yield t * x
if k > maxterms:
raise ctx.NoConvergence
return ctx.sum_accurately(terms)