175 lines
6.2 KiB
Python
175 lines
6.2 KiB
Python
"""
|
|
====================
|
|
Biadjacency matrices
|
|
====================
|
|
"""
|
|
import itertools
|
|
|
|
import networkx as nx
|
|
from networkx.convert_matrix import _generate_weighted_edges
|
|
|
|
__all__ = ["biadjacency_matrix", "from_biadjacency_matrix"]
|
|
|
|
|
|
def biadjacency_matrix(
|
|
G, row_order, column_order=None, dtype=None, weight="weight", format="csr"
|
|
):
|
|
r"""Returns the biadjacency matrix of the bipartite graph G.
|
|
|
|
Let `G = (U, V, E)` be a bipartite graph with node sets
|
|
`U = u_{1},...,u_{r}` and `V = v_{1},...,v_{s}`. The biadjacency
|
|
matrix [1]_ is the `r` x `s` matrix `B` in which `b_{i,j} = 1`
|
|
if, and only if, `(u_i, v_j) \in E`. If the parameter `weight` is
|
|
not `None` and matches the name of an edge attribute, its value is
|
|
used instead of 1.
|
|
|
|
Parameters
|
|
----------
|
|
G : graph
|
|
A NetworkX graph
|
|
|
|
row_order : list of nodes
|
|
The rows of the matrix are ordered according to the list of nodes.
|
|
|
|
column_order : list, optional
|
|
The columns of the matrix are ordered according to the list of nodes.
|
|
If column_order is None, then the ordering of columns is arbitrary.
|
|
|
|
dtype : NumPy data-type, optional
|
|
A valid NumPy dtype used to initialize the array. If None, then the
|
|
NumPy default is used.
|
|
|
|
weight : string or None, optional (default='weight')
|
|
The edge data key used to provide each value in the matrix.
|
|
If None, then each edge has weight 1.
|
|
|
|
format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
|
|
The type of the matrix to be returned (default 'csr'). For
|
|
some algorithms different implementations of sparse matrices
|
|
can perform better. See [2]_ for details.
|
|
|
|
Returns
|
|
-------
|
|
M : SciPy sparse matrix
|
|
Biadjacency matrix representation of the bipartite graph G.
|
|
|
|
Notes
|
|
-----
|
|
No attempt is made to check that the input graph is bipartite.
|
|
|
|
For directed bipartite graphs only successors are considered as neighbors.
|
|
To obtain an adjacency matrix with ones (or weight values) for both
|
|
predecessors and successors you have to generate two biadjacency matrices
|
|
where the rows of one of them are the columns of the other, and then add
|
|
one to the transpose of the other.
|
|
|
|
See Also
|
|
--------
|
|
adjacency_matrix
|
|
from_biadjacency_matrix
|
|
|
|
References
|
|
----------
|
|
.. [1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
|
|
.. [2] Scipy Dev. References, "Sparse Matrices",
|
|
https://docs.scipy.org/doc/scipy/reference/sparse.html
|
|
"""
|
|
import scipy as sp
|
|
import scipy.sparse # call as sp.sparse
|
|
|
|
nlen = len(row_order)
|
|
if nlen == 0:
|
|
raise nx.NetworkXError("row_order is empty list")
|
|
if len(row_order) != len(set(row_order)):
|
|
msg = "Ambiguous ordering: `row_order` contained duplicates."
|
|
raise nx.NetworkXError(msg)
|
|
if column_order is None:
|
|
column_order = list(set(G) - set(row_order))
|
|
mlen = len(column_order)
|
|
if len(column_order) != len(set(column_order)):
|
|
msg = "Ambiguous ordering: `column_order` contained duplicates."
|
|
raise nx.NetworkXError(msg)
|
|
|
|
row_index = dict(zip(row_order, itertools.count()))
|
|
col_index = dict(zip(column_order, itertools.count()))
|
|
|
|
if G.number_of_edges() == 0:
|
|
row, col, data = [], [], []
|
|
else:
|
|
row, col, data = zip(
|
|
*(
|
|
(row_index[u], col_index[v], d.get(weight, 1))
|
|
for u, v, d in G.edges(row_order, data=True)
|
|
if u in row_index and v in col_index
|
|
)
|
|
)
|
|
# TODO: change coo_matrix -> coo_array for NX 3.0
|
|
A = sp.sparse.coo_matrix((data, (row, col)), shape=(nlen, mlen), dtype=dtype)
|
|
try:
|
|
import warnings
|
|
|
|
warnings.warn(
|
|
"biadjacency_matrix will return a scipy.sparse array instead of a matrix in NetworkX 3.0",
|
|
FutureWarning,
|
|
stacklevel=2,
|
|
)
|
|
return A.asformat(format)
|
|
except ValueError as err:
|
|
raise nx.NetworkXError(f"Unknown sparse array format: {format}") from err
|
|
|
|
|
|
def from_biadjacency_matrix(A, create_using=None, edge_attribute="weight"):
|
|
r"""Creates a new bipartite graph from a biadjacency matrix given as a
|
|
SciPy sparse matrix.
|
|
|
|
Parameters
|
|
----------
|
|
A: scipy sparse matrix
|
|
A biadjacency matrix representation of a graph
|
|
|
|
create_using: NetworkX graph
|
|
Use specified graph for result. The default is Graph()
|
|
|
|
edge_attribute: string
|
|
Name of edge attribute to store matrix numeric value. The data will
|
|
have the same type as the matrix entry (int, float, (real,imag)).
|
|
|
|
Notes
|
|
-----
|
|
The nodes are labeled with the attribute `bipartite` set to an integer
|
|
0 or 1 representing membership in part 0 or part 1 of the bipartite graph.
|
|
|
|
If `create_using` is an instance of :class:`networkx.MultiGraph` or
|
|
:class:`networkx.MultiDiGraph` and the entries of `A` are of
|
|
type :class:`int`, then this function returns a multigraph (of the same
|
|
type as `create_using`) with parallel edges. In this case, `edge_attribute`
|
|
will be ignored.
|
|
|
|
See Also
|
|
--------
|
|
biadjacency_matrix
|
|
from_numpy_array
|
|
|
|
References
|
|
----------
|
|
[1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
|
|
"""
|
|
G = nx.empty_graph(0, create_using)
|
|
n, m = A.shape
|
|
# Make sure we get even the isolated nodes of the graph.
|
|
G.add_nodes_from(range(n), bipartite=0)
|
|
G.add_nodes_from(range(n, n + m), bipartite=1)
|
|
# Create an iterable over (u, v, w) triples and for each triple, add an
|
|
# edge from u to v with weight w.
|
|
triples = ((u, n + v, d) for (u, v, d) in _generate_weighted_edges(A))
|
|
# If the entries in the adjacency matrix are integers and the graph is a
|
|
# multigraph, then create parallel edges, each with weight 1, for each
|
|
# entry in the adjacency matrix. Otherwise, create one edge for each
|
|
# positive entry in the adjacency matrix and set the weight of that edge to
|
|
# be the entry in the matrix.
|
|
if A.dtype.kind in ("i", "u") and G.is_multigraph():
|
|
chain = itertools.chain.from_iterable
|
|
triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
|
|
G.add_weighted_edges_from(triples, weight=edge_attribute)
|
|
return G
|