ai-content-maker/.venv/Lib/site-packages/nltk/tokenize/util.py

296 lines
9.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Natural Language Toolkit: Tokenizer Utilities
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT
from re import finditer
from xml.sax.saxutils import escape, unescape
def string_span_tokenize(s, sep):
r"""
Return the offsets of the tokens in *s*, as a sequence of ``(start, end)``
tuples, by splitting the string at each occurrence of *sep*.
>>> from nltk.tokenize.util import string_span_tokenize
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> list(string_span_tokenize(s, " ")) # doctest: +NORMALIZE_WHITESPACE
[(0, 4), (5, 12), (13, 17), (18, 26), (27, 30), (31, 36), (37, 37),
(38, 44), (45, 48), (49, 55), (56, 58), (59, 73)]
:param s: the string to be tokenized
:type s: str
:param sep: the token separator
:type sep: str
:rtype: iter(tuple(int, int))
"""
if len(sep) == 0:
raise ValueError("Token delimiter must not be empty")
left = 0
while True:
try:
right = s.index(sep, left)
if right != 0:
yield left, right
except ValueError:
if left != len(s):
yield left, len(s)
break
left = right + len(sep)
def regexp_span_tokenize(s, regexp):
r"""
Return the offsets of the tokens in *s*, as a sequence of ``(start, end)``
tuples, by splitting the string at each successive match of *regexp*.
>>> from nltk.tokenize.util import regexp_span_tokenize
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> list(regexp_span_tokenize(s, r'\s')) # doctest: +NORMALIZE_WHITESPACE
[(0, 4), (5, 12), (13, 17), (18, 23), (24, 26), (27, 30), (31, 36),
(38, 44), (45, 48), (49, 51), (52, 55), (56, 58), (59, 64), (66, 73)]
:param s: the string to be tokenized
:type s: str
:param regexp: regular expression that matches token separators (must not be empty)
:type regexp: str
:rtype: iter(tuple(int, int))
"""
left = 0
for m in finditer(regexp, s):
right, next = m.span()
if right != left:
yield left, right
left = next
yield left, len(s)
def spans_to_relative(spans):
r"""
Return a sequence of relative spans, given a sequence of spans.
>>> from nltk.tokenize import WhitespaceTokenizer
>>> from nltk.tokenize.util import spans_to_relative
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> list(spans_to_relative(WhitespaceTokenizer().span_tokenize(s))) # doctest: +NORMALIZE_WHITESPACE
[(0, 4), (1, 7), (1, 4), (1, 5), (1, 2), (1, 3), (1, 5), (2, 6),
(1, 3), (1, 2), (1, 3), (1, 2), (1, 5), (2, 7)]
:param spans: a sequence of (start, end) offsets of the tokens
:type spans: iter(tuple(int, int))
:rtype: iter(tuple(int, int))
"""
prev = 0
for left, right in spans:
yield left - prev, right - left
prev = right
class CJKChars:
"""
An object that enumerates the code points of the CJK characters as listed on
https://en.wikipedia.org/wiki/Basic_Multilingual_Plane#Basic_Multilingual_Plane
This is a Python port of the CJK code point enumerations of Moses tokenizer:
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl#L309
"""
# Hangul Jamo (110011FF)
Hangul_Jamo = (4352, 4607) # (ord(u"\u1100"), ord(u"\u11ff"))
# CJK Radicals Supplement (2E802EFF)
# Kangxi Radicals (2F002FDF)
# Ideographic Description Characters (2FF02FFF)
# CJK Symbols and Punctuation (3000303F)
# Hiragana (3040309F)
# Katakana (30A030FF)
# Bopomofo (3100312F)
# Hangul Compatibility Jamo (3130318F)
# Kanbun (3190319F)
# Bopomofo Extended (31A031BF)
# CJK Strokes (31C031EF)
# Katakana Phonetic Extensions (31F031FF)
# Enclosed CJK Letters and Months (320032FF)
# CJK Compatibility (330033FF)
# CJK Unified Ideographs Extension A (34004DBF)
# Yijing Hexagram Symbols (4DC04DFF)
# CJK Unified Ideographs (4E009FFF)
# Yi Syllables (A000A48F)
# Yi Radicals (A490A4CF)
CJK_Radicals = (11904, 42191) # (ord(u"\u2e80"), ord(u"\ua4cf"))
# Phags-pa (A840A87F)
Phags_Pa = (43072, 43135) # (ord(u"\ua840"), ord(u"\ua87f"))
# Hangul Syllables (AC00D7AF)
Hangul_Syllables = (44032, 55215) # (ord(u"\uAC00"), ord(u"\uD7AF"))
# CJK Compatibility Ideographs (F900FAFF)
CJK_Compatibility_Ideographs = (63744, 64255) # (ord(u"\uF900"), ord(u"\uFAFF"))
# CJK Compatibility Forms (FE30FE4F)
CJK_Compatibility_Forms = (65072, 65103) # (ord(u"\uFE30"), ord(u"\uFE4F"))
# Range U+FF65FFDC encodes halfwidth forms, of Katakana and Hangul characters
Katakana_Hangul_Halfwidth = (65381, 65500) # (ord(u"\uFF65"), ord(u"\uFFDC"))
# Supplementary Ideographic Plane 200002FFFF
Supplementary_Ideographic_Plane = (
131072,
196607,
) # (ord(u"\U00020000"), ord(u"\U0002FFFF"))
ranges = [
Hangul_Jamo,
CJK_Radicals,
Phags_Pa,
Hangul_Syllables,
CJK_Compatibility_Ideographs,
CJK_Compatibility_Forms,
Katakana_Hangul_Halfwidth,
Supplementary_Ideographic_Plane,
]
def is_cjk(character):
"""
Python port of Moses' code to check for CJK character.
>>> CJKChars().ranges
[(4352, 4607), (11904, 42191), (43072, 43135), (44032, 55215), (63744, 64255), (65072, 65103), (65381, 65500), (131072, 196607)]
>>> is_cjk(u'\u33fe')
True
>>> is_cjk(u'\uFE5F')
False
:param character: The character that needs to be checked.
:type character: char
:return: bool
"""
return any(
[
start <= ord(character) <= end
for start, end in [
(4352, 4607),
(11904, 42191),
(43072, 43135),
(44032, 55215),
(63744, 64255),
(65072, 65103),
(65381, 65500),
(131072, 196607),
]
]
)
def xml_escape(text):
"""
This function transforms the input text into an "escaped" version suitable
for well-formed XML formatting.
Note that the default xml.sax.saxutils.escape() function don't escape
some characters that Moses does so we have to manually add them to the
entities dictionary.
>>> input_str = ''')| & < > ' " ] ['''
>>> expected_output = ''')| &amp; &lt; &gt; ' " ] ['''
>>> escape(input_str) == expected_output
True
>>> xml_escape(input_str)
')&#124; &amp; &lt; &gt; &apos; &quot; &#93; &#91;'
:param text: The text that needs to be escaped.
:type text: str
:rtype: str
"""
return escape(
text,
entities={
r"'": r"&apos;",
r'"': r"&quot;",
r"|": r"&#124;",
r"[": r"&#91;",
r"]": r"&#93;",
},
)
def xml_unescape(text):
"""
This function transforms the "escaped" version suitable
for well-formed XML formatting into humanly-readable string.
Note that the default xml.sax.saxutils.unescape() function don't unescape
some characters that Moses does so we have to manually add them to the
entities dictionary.
>>> from xml.sax.saxutils import unescape
>>> s = ')&#124; &amp; &lt; &gt; &apos; &quot; &#93; &#91;'
>>> expected = ''')| & < > \' " ] ['''
>>> xml_unescape(s) == expected
True
:param text: The text that needs to be unescaped.
:type text: str
:rtype: str
"""
return unescape(
text,
entities={
r"&apos;": r"'",
r"&quot;": r'"',
r"&#124;": r"|",
r"&#91;": r"[",
r"&#93;": r"]",
},
)
def align_tokens(tokens, sentence):
"""
This module attempt to find the offsets of the tokens in *s*, as a sequence
of ``(start, end)`` tuples, given the tokens and also the source string.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> from nltk.tokenize.util import align_tokens
>>> s = str("The plane, bound for St Petersburg, crashed in Egypt's "
... "Sinai desert just 23 minutes after take-off from Sharm el-Sheikh "
... "on Saturday.")
>>> tokens = TreebankWordTokenizer().tokenize(s)
>>> expected = [(0, 3), (4, 9), (9, 10), (11, 16), (17, 20), (21, 23),
... (24, 34), (34, 35), (36, 43), (44, 46), (47, 52), (52, 54),
... (55, 60), (61, 67), (68, 72), (73, 75), (76, 83), (84, 89),
... (90, 98), (99, 103), (104, 109), (110, 119), (120, 122),
... (123, 131), (131, 132)]
>>> output = list(align_tokens(tokens, s))
>>> len(tokens) == len(expected) == len(output) # Check that length of tokens and tuples are the same.
True
>>> expected == list(align_tokens(tokens, s)) # Check that the output is as expected.
True
>>> tokens == [s[start:end] for start, end in output] # Check that the slices of the string corresponds to the tokens.
True
:param tokens: The list of strings that are the result of tokenization
:type tokens: list(str)
:param sentence: The original string
:type sentence: str
:rtype: list(tuple(int,int))
"""
point = 0
offsets = []
for token in tokens:
try:
start = sentence.index(token, point)
except ValueError as e:
raise ValueError(f'substring "{token}" not found in "{sentence}"') from e
point = start + len(token)
offsets.append((start, point))
return offsets