ai-content-maker/.venv/Lib/site-packages/numba/cpython/builtins.py

1005 lines
34 KiB
Python

from collections import namedtuple
import math
from functools import reduce
import numpy as np
import operator
import warnings
from llvmlite import ir
from numba.core.imputils import (lower_builtin, lower_getattr,
lower_getattr_generic, lower_cast,
lower_constant, iternext_impl,
call_getiter, call_iternext, impl_ret_borrowed,
impl_ret_untracked, numba_typeref_ctor)
from numba.core import typing, types, utils, cgutils
from numba.core.extending import overload, intrinsic
from numba.core.typeconv import Conversion
from numba.core.errors import (TypingError, LoweringError,
NumbaExperimentalFeatureWarning,
NumbaTypeError, RequireLiteralValue,
NumbaPerformanceWarning)
from numba.misc.special import literal_unroll
from numba.core.typing.asnumbatype import as_numba_type
@overload(operator.truth)
def ol_truth(val):
if isinstance(val, types.Boolean):
def impl(val):
return val
return impl
@lower_builtin(operator.is_not, types.Any, types.Any)
def generic_is_not(context, builder, sig, args):
"""
Implement `x is not y` as `not (x is y)`.
"""
is_impl = context.get_function(operator.is_, sig)
return builder.not_(is_impl(builder, args))
@lower_builtin(operator.is_, types.Any, types.Any)
def generic_is(context, builder, sig, args):
"""
Default implementation for `x is y`
"""
lhs_type, rhs_type = sig.args
# the lhs and rhs have the same type
if lhs_type == rhs_type:
# mutable types
if lhs_type.mutable:
msg = 'no default `is` implementation'
raise LoweringError(msg)
# immutable types
else:
# fallbacks to `==`
try:
eq_impl = context.get_function(operator.eq, sig)
except NotImplementedError:
# no `==` implemented for this type
return cgutils.false_bit
else:
return eq_impl(builder, args)
else:
return cgutils.false_bit
@lower_builtin(operator.is_, types.Opaque, types.Opaque)
def opaque_is(context, builder, sig, args):
"""
Implementation for `x is y` for Opaque types.
"""
lhs_type, rhs_type = sig.args
# the lhs and rhs have the same type
if lhs_type == rhs_type:
lhs_ptr = builder.ptrtoint(args[0], cgutils.intp_t)
rhs_ptr = builder.ptrtoint(args[1], cgutils.intp_t)
return builder.icmp_unsigned('==', lhs_ptr, rhs_ptr)
else:
return cgutils.false_bit
@lower_builtin(operator.is_, types.Boolean, types.Boolean)
def bool_is_impl(context, builder, sig, args):
"""
Implementation for `x is y` for types derived from types.Boolean
(e.g. BooleanLiteral), and cross-checks between literal and non-literal
booleans, to satisfy Python's behavior preserving identity for bools.
"""
arg1, arg2 = args
arg1_type, arg2_type = sig.args
_arg1 = context.cast(builder, arg1, arg1_type, types.boolean)
_arg2 = context.cast(builder, arg2, arg2_type, types.boolean)
eq_impl = context.get_function(
operator.eq,
typing.signature(types.boolean, types.boolean, types.boolean)
)
return eq_impl(builder, (_arg1, _arg2))
# keep types.IntegerLiteral, as otherwise there's ambiguity between this and int_eq_impl
@lower_builtin(operator.eq, types.Literal, types.Literal)
@lower_builtin(operator.eq, types.IntegerLiteral, types.IntegerLiteral)
def const_eq_impl(context, builder, sig, args):
arg1, arg2 = sig.args
val = 0
if arg1.literal_value == arg2.literal_value:
val = 1
res = ir.Constant(ir.IntType(1), val)
return impl_ret_untracked(context, builder, sig.return_type, res)
# keep types.IntegerLiteral, as otherwise there's ambiguity between this and int_ne_impl
@lower_builtin(operator.ne, types.Literal, types.Literal)
@lower_builtin(operator.ne, types.IntegerLiteral, types.IntegerLiteral)
def const_ne_impl(context, builder, sig, args):
arg1, arg2 = sig.args
val = 0
if arg1.literal_value != arg2.literal_value:
val = 1
res = ir.Constant(ir.IntType(1), val)
return impl_ret_untracked(context, builder, sig.return_type, res)
def gen_non_eq(val):
def none_equality(a, b):
a_none = isinstance(a, types.NoneType)
b_none = isinstance(b, types.NoneType)
if a_none and b_none:
def impl(a, b):
return val
return impl
elif a_none ^ b_none:
def impl(a, b):
return not val
return impl
return none_equality
overload(operator.eq)(gen_non_eq(True))
overload(operator.ne)(gen_non_eq(False))
#-------------------------------------------------------------------------------
@lower_getattr_generic(types.DeferredType)
def deferred_getattr(context, builder, typ, value, attr):
"""
Deferred.__getattr__ => redirect to the actual type.
"""
inner_type = typ.get()
val = context.cast(builder, value, typ, inner_type)
imp = context.get_getattr(inner_type, attr)
return imp(context, builder, inner_type, val, attr)
@lower_cast(types.Any, types.DeferredType)
@lower_cast(types.Optional, types.DeferredType)
@lower_cast(types.Boolean, types.DeferredType)
def any_to_deferred(context, builder, fromty, toty, val):
actual = context.cast(builder, val, fromty, toty.get())
model = context.data_model_manager[toty]
return model.set(builder, model.make_uninitialized(), actual)
@lower_cast(types.DeferredType, types.Any)
@lower_cast(types.DeferredType, types.Boolean)
@lower_cast(types.DeferredType, types.Optional)
def deferred_to_any(context, builder, fromty, toty, val):
model = context.data_model_manager[fromty]
val = model.get(builder, val)
return context.cast(builder, val, fromty.get(), toty)
#------------------------------------------------------------------------------
@lower_builtin(operator.getitem, types.CPointer, types.Integer)
def getitem_cpointer(context, builder, sig, args):
base_ptr, idx = args
elem_ptr = builder.gep(base_ptr, [idx])
res = builder.load(elem_ptr)
return impl_ret_borrowed(context, builder, sig.return_type, res)
@lower_builtin(operator.setitem, types.CPointer, types.Integer, types.Any)
def setitem_cpointer(context, builder, sig, args):
base_ptr, idx, val = args
elem_ptr = builder.gep(base_ptr, [idx])
builder.store(val, elem_ptr)
#-------------------------------------------------------------------------------
def do_minmax(context, builder, argtys, args, cmpop):
assert len(argtys) == len(args), (argtys, args)
assert len(args) > 0
def binary_minmax(accumulator, value):
# This is careful to reproduce Python's algorithm, e.g.
# max(1.5, nan, 2.5) should return 2.5 (not nan or 1.5)
accty, acc = accumulator
vty, v = value
ty = context.typing_context.unify_types(accty, vty)
assert ty is not None
acc = context.cast(builder, acc, accty, ty)
v = context.cast(builder, v, vty, ty)
cmpsig = typing.signature(types.boolean, ty, ty)
ge = context.get_function(cmpop, cmpsig)
pred = ge(builder, (v, acc))
res = builder.select(pred, v, acc)
return ty, res
typvals = zip(argtys, args)
resty, resval = reduce(binary_minmax, typvals)
return resval
@lower_builtin(max, types.BaseTuple)
def max_iterable(context, builder, sig, args):
argtys = list(sig.args[0])
args = cgutils.unpack_tuple(builder, args[0])
return do_minmax(context, builder, argtys, args, operator.gt)
@lower_builtin(max, types.VarArg(types.Any))
def max_vararg(context, builder, sig, args):
return do_minmax(context, builder, sig.args, args, operator.gt)
@lower_builtin(min, types.BaseTuple)
def min_iterable(context, builder, sig, args):
argtys = list(sig.args[0])
args = cgutils.unpack_tuple(builder, args[0])
return do_minmax(context, builder, argtys, args, operator.lt)
@lower_builtin(min, types.VarArg(types.Any))
def min_vararg(context, builder, sig, args):
return do_minmax(context, builder, sig.args, args, operator.lt)
def _round_intrinsic(tp):
# round() rounds half to even
return "llvm.rint.f%d" % (tp.bitwidth,)
@lower_builtin(round, types.Float)
def round_impl_unary(context, builder, sig, args):
fltty = sig.args[0]
llty = context.get_value_type(fltty)
module = builder.module
fnty = ir.FunctionType(llty, [llty])
fn = cgutils.get_or_insert_function(module, fnty, _round_intrinsic(fltty))
res = builder.call(fn, args)
# unary round() returns an int
res = builder.fptosi(res, context.get_value_type(sig.return_type))
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(round, types.Float, types.Integer)
def round_impl_binary(context, builder, sig, args):
fltty = sig.args[0]
# Allow calling the intrinsic from the Python implementation below.
# This avoids the conversion to an int in Python 3's unary round().
_round = types.ExternalFunction(
_round_intrinsic(fltty), typing.signature(fltty, fltty))
def round_ndigits(x, ndigits):
if math.isinf(x) or math.isnan(x):
return x
if ndigits >= 0:
if ndigits > 22:
# pow1 and pow2 are each safe from overflow, but
# pow1*pow2 ~= pow(10.0, ndigits) might overflow.
pow1 = 10.0 ** (ndigits - 22)
pow2 = 1e22
else:
pow1 = 10.0 ** ndigits
pow2 = 1.0
y = (x * pow1) * pow2
if math.isinf(y):
return x
return (_round(y) / pow2) / pow1
else:
pow1 = 10.0 ** (-ndigits)
y = x / pow1
return _round(y) * pow1
res = context.compile_internal(builder, round_ndigits, sig, args)
return impl_ret_untracked(context, builder, sig.return_type, res)
#-------------------------------------------------------------------------------
# Numeric constructors
@lower_builtin(int, types.Any)
@lower_builtin(float, types.Any)
def int_impl(context, builder, sig, args):
[ty] = sig.args
[val] = args
res = context.cast(builder, val, ty, sig.return_type)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(complex, types.VarArg(types.Any))
def complex_impl(context, builder, sig, args):
complex_type = sig.return_type
float_type = complex_type.underlying_float
if len(sig.args) == 1:
[argty] = sig.args
[arg] = args
if isinstance(argty, types.Complex):
# Cast Complex* to Complex*
res = context.cast(builder, arg, argty, complex_type)
return impl_ret_untracked(context, builder, sig.return_type, res)
else:
real = context.cast(builder, arg, argty, float_type)
imag = context.get_constant(float_type, 0)
elif len(sig.args) == 2:
[realty, imagty] = sig.args
[real, imag] = args
real = context.cast(builder, real, realty, float_type)
imag = context.cast(builder, imag, imagty, float_type)
cmplx = context.make_complex(builder, complex_type)
cmplx.real = real
cmplx.imag = imag
res = cmplx._getvalue()
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(types.NumberClass, types.Any)
def number_constructor(context, builder, sig, args):
"""
Call a number class, e.g. np.int32(...)
"""
if isinstance(sig.return_type, types.Array):
# Array constructor
dt = sig.return_type.dtype
def foo(*arg_hack):
return np.array(arg_hack, dtype=dt)
res = context.compile_internal(builder, foo, sig, args)
return impl_ret_untracked(context, builder, sig.return_type, res)
else:
# Scalar constructor
[val] = args
[valty] = sig.args
return context.cast(builder, val, valty, sig.return_type)
#-------------------------------------------------------------------------------
# Constants
@lower_constant(types.Dummy)
def constant_dummy(context, builder, ty, pyval):
# This handles None, etc.
return context.get_dummy_value()
@lower_constant(types.ExternalFunctionPointer)
def constant_function_pointer(context, builder, ty, pyval):
ptrty = context.get_function_pointer_type(ty)
ptrval = context.add_dynamic_addr(builder, ty.get_pointer(pyval),
info=str(pyval))
return builder.bitcast(ptrval, ptrty)
@lower_constant(types.Optional)
def constant_optional(context, builder, ty, pyval):
if pyval is None:
return context.make_optional_none(builder, ty.type)
else:
return context.make_optional_value(builder, ty.type, pyval)
# -----------------------------------------------------------------------------
@lower_builtin(type, types.Any)
def type_impl(context, builder, sig, args):
"""
One-argument type() builtin.
"""
return context.get_dummy_value()
@lower_builtin(iter, types.IterableType)
def iter_impl(context, builder, sig, args):
ty, = sig.args
val, = args
iterval = call_getiter(context, builder, ty, val)
return iterval
@lower_builtin(next, types.IteratorType)
def next_impl(context, builder, sig, args):
iterty, = sig.args
iterval, = args
res = call_iternext(context, builder, iterty, iterval)
with builder.if_then(builder.not_(res.is_valid()), likely=False):
context.call_conv.return_user_exc(builder, StopIteration, ())
return res.yielded_value()
# -----------------------------------------------------------------------------
@lower_builtin("not in", types.Any, types.Any)
def not_in(context, builder, sig, args):
def in_impl(a, b):
return operator.contains(b, a)
res = context.compile_internal(builder, in_impl, sig, args)
return builder.not_(res)
# -----------------------------------------------------------------------------
@lower_builtin(len, types.ConstSized)
def constsized_len(context, builder, sig, args):
[ty] = sig.args
retty = sig.return_type
res = context.get_constant(retty, len(ty.types))
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(bool, types.Sized)
def sized_bool(context, builder, sig, args):
[ty] = sig.args
if len(ty):
return cgutils.true_bit
else:
return cgutils.false_bit
@lower_builtin(tuple)
def lower_empty_tuple(context, builder, sig, args):
retty = sig.return_type
res = context.get_constant_undef(retty)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(tuple, types.BaseTuple)
def lower_tuple(context, builder, sig, args):
val, = args
return impl_ret_borrowed(context, builder, sig.return_type, val)
@overload(bool)
def bool_sequence(x):
valid_types = (
types.CharSeq,
types.UnicodeCharSeq,
types.DictType,
types.ListType,
types.UnicodeType,
types.Set,
)
if isinstance(x, valid_types):
def bool_impl(x):
return len(x) > 0
return bool_impl
@overload(bool, inline='always')
def bool_none(x):
if isinstance(x, types.NoneType) or x is None:
return lambda x: False
# -----------------------------------------------------------------------------
def get_type_max_value(typ):
if isinstance(typ, types.Float):
return np.inf
if isinstance(typ, types.Integer):
return typ.maxval
raise NotImplementedError("Unsupported type")
def get_type_min_value(typ):
if isinstance(typ, types.Float):
return -np.inf
if isinstance(typ, types.Integer):
return typ.minval
raise NotImplementedError("Unsupported type")
@lower_builtin(get_type_min_value, types.NumberClass)
@lower_builtin(get_type_min_value, types.DType)
def lower_get_type_min_value(context, builder, sig, args):
typ = sig.args[0].dtype
if isinstance(typ, types.Integer):
bw = typ.bitwidth
lty = ir.IntType(bw)
val = typ.minval
res = ir.Constant(lty, val)
elif isinstance(typ, types.Float):
bw = typ.bitwidth
if bw == 32:
lty = ir.FloatType()
elif bw == 64:
lty = ir.DoubleType()
else:
raise NotImplementedError("llvmlite only supports 32 and 64 bit floats")
npty = getattr(np, 'float{}'.format(bw))
res = ir.Constant(lty, -np.inf)
elif isinstance(typ, (types.NPDatetime, types.NPTimedelta)):
bw = 64
lty = ir.IntType(bw)
val = types.int64.minval + 1 # minval is NaT, so minval + 1 is the smallest value
res = ir.Constant(lty, val)
return impl_ret_untracked(context, builder, lty, res)
@lower_builtin(get_type_max_value, types.NumberClass)
@lower_builtin(get_type_max_value, types.DType)
def lower_get_type_max_value(context, builder, sig, args):
typ = sig.args[0].dtype
if isinstance(typ, types.Integer):
bw = typ.bitwidth
lty = ir.IntType(bw)
val = typ.maxval
res = ir.Constant(lty, val)
elif isinstance(typ, types.Float):
bw = typ.bitwidth
if bw == 32:
lty = ir.FloatType()
elif bw == 64:
lty = ir.DoubleType()
else:
raise NotImplementedError("llvmlite only supports 32 and 64 bit floats")
npty = getattr(np, 'float{}'.format(bw))
res = ir.Constant(lty, np.inf)
elif isinstance(typ, (types.NPDatetime, types.NPTimedelta)):
bw = 64
lty = ir.IntType(bw)
val = types.int64.maxval
res = ir.Constant(lty, val)
return impl_ret_untracked(context, builder, lty, res)
# -----------------------------------------------------------------------------
from numba.core.typing.builtins import IndexValue, IndexValueType
from numba.extending import overload, register_jitable
@lower_builtin(IndexValue, types.intp, types.Type)
@lower_builtin(IndexValue, types.uintp, types.Type)
def impl_index_value(context, builder, sig, args):
typ = sig.return_type
index, value = args
index_value = cgutils.create_struct_proxy(typ)(context, builder)
index_value.index = index
index_value.value = value
return index_value._getvalue()
@overload(min)
def indval_min(indval1, indval2):
if isinstance(indval1, IndexValueType) and \
isinstance(indval2, IndexValueType):
def min_impl(indval1, indval2):
if np.isnan(indval1.value):
if np.isnan(indval2.value):
# both indval1 and indval2 are nans so order by index
if indval1.index < indval2.index:
return indval1
else:
return indval2
else:
# comparing against one nan always considered less
return indval1
elif np.isnan(indval2.value):
# indval1 not a nan but indval2 is so consider indval2 less
return indval2
elif indval1.value > indval2.value:
return indval2
elif indval1.value == indval2.value:
if indval1.index < indval2.index:
return indval1
else:
return indval2
return indval1
return min_impl
@overload(min)
def boolval_min(val1, val2):
if isinstance(val1, types.Boolean) and \
isinstance(val2, types.Boolean):
def bool_min_impl(val1, val2):
return val1 and val2
return bool_min_impl
@overload(max)
def indval_max(indval1, indval2):
if isinstance(indval1, IndexValueType) and \
isinstance(indval2, IndexValueType):
def max_impl(indval1, indval2):
if np.isnan(indval1.value):
if np.isnan(indval2.value):
# both indval1 and indval2 are nans so order by index
if indval1.index < indval2.index:
return indval1
else:
return indval2
else:
# comparing against one nan always considered larger
return indval1
elif np.isnan(indval2.value):
# indval1 not a nan but indval2 is so consider indval2 larger
return indval2
elif indval2.value > indval1.value:
return indval2
elif indval1.value == indval2.value:
if indval1.index < indval2.index:
return indval1
else:
return indval2
return indval1
return max_impl
@overload(max)
def boolval_max(val1, val2):
if isinstance(val1, types.Boolean) and \
isinstance(val2, types.Boolean):
def bool_max_impl(val1, val2):
return val1 or val2
return bool_max_impl
greater_than = register_jitable(lambda a, b: a > b)
less_than = register_jitable(lambda a, b: a < b)
@register_jitable
def min_max_impl(iterable, op):
if isinstance(iterable, types.IterableType):
def impl(iterable):
it = iter(iterable)
return_val = next(it)
for val in it:
if op(val, return_val):
return_val = val
return return_val
return impl
@overload(min)
def iterable_min(iterable):
return min_max_impl(iterable, less_than)
@overload(max)
def iterable_max(iterable):
return min_max_impl(iterable, greater_than)
@lower_builtin(types.TypeRef, types.VarArg(types.Any))
def redirect_type_ctor(context, builder, sig, args):
"""Redirect constructor implementation to `numba_typeref_ctor(cls, *args)`,
which should be overloaded by the type's implementation.
For example:
d = Dict()
`d` will be typed as `TypeRef[DictType]()`. Thus, it will call into this
implementation. We need to redirect the lowering to a function
named ``numba_typeref_ctor``.
"""
cls = sig.return_type
def call_ctor(cls, *args):
return numba_typeref_ctor(cls, *args)
# Pack arguments into a tuple for `*args`
ctor_args = types.Tuple.from_types(sig.args)
# Make signature T(TypeRef[T], *args) where T is cls
sig = typing.signature(cls, types.TypeRef(cls), ctor_args)
if len(ctor_args) > 0:
args = (context.get_dummy_value(), # Type object has no runtime repr.
context.make_tuple(builder, ctor_args, args))
else:
args = (context.get_dummy_value(), # Type object has no runtime repr.
context.make_tuple(builder, ctor_args, ()))
return context.compile_internal(builder, call_ctor, sig, args)
@overload(sum)
def ol_sum(iterable, start=0):
# Cpython explicitly rejects strings, bytes and bytearrays
# https://github.com/python/cpython/blob/3.9/Python/bltinmodule.c#L2310-L2329 # noqa: E501
error = None
if isinstance(start, types.UnicodeType):
error = ('strings', '')
elif isinstance(start, types.Bytes):
error = ('bytes', 'b')
elif isinstance(start, types.ByteArray):
error = ('bytearray', 'b')
if error is not None:
msg = "sum() can't sum {} [use {}''.join(seq) instead]".format(*error)
raise TypingError(msg)
# if the container is homogeneous then it's relatively easy to handle.
if isinstance(iterable, (types.containers._HomogeneousTuple, types.List,
types.ListType, types.Array, types.RangeType)):
iterator = iter
elif isinstance(iterable, (types.containers._HeterogeneousTuple)):
# if container is heterogeneous then literal unroll and hope for the
# best.
iterator = literal_unroll
else:
return None
def impl(iterable, start=0):
acc = start
for x in iterator(iterable):
# This most likely widens the type, this is expected Numba behaviour
acc = acc + x
return acc
return impl
# ------------------------------------------------------------------------------
# map, filter, reduce
@overload(map)
def ol_map(func, iterable, *args):
def impl(func, iterable, *args):
for x in zip(iterable, *args):
yield func(*x)
return impl
@overload(filter)
def ol_filter(func, iterable):
if (func is None) or isinstance(func, types.NoneType):
def impl(func, iterable):
for x in iterable:
if x:
yield x
else:
def impl(func, iterable):
for x in iterable:
if func(x):
yield x
return impl
@overload(isinstance)
def ol_isinstance(var, typs):
def true_impl(var, typs):
return True
def false_impl(var, typs):
return False
var_ty = as_numba_type(var)
if isinstance(var_ty, types.Optional):
msg = f'isinstance cannot handle optional types. Found: "{var_ty}"'
raise NumbaTypeError(msg)
# NOTE: The current implementation of `isinstance` restricts the type of the
# instance variable to types that are well known and in common use. The
# danger of unrestricted type comparison is that a "default" of `False` is
# required and this means that if there is a bug in the logic of the
# comparison tree `isinstance` returns False! It's therefore safer to just
# reject the compilation as untypable!
supported_var_ty = (types.Number, types.Bytes, types.RangeType,
types.DictType, types.LiteralStrKeyDict, types.List,
types.ListType, types.Tuple, types.UniTuple, types.Set,
types.Function, types.ClassType, types.UnicodeType,
types.ClassInstanceType, types.NoneType, types.Array,
types.Boolean, types.Float, types.UnicodeCharSeq,
types.Complex)
if not isinstance(var_ty, supported_var_ty):
msg = f'isinstance() does not support variables of type "{var_ty}".'
raise NumbaTypeError(msg)
t_typs = typs
# Check the types that the var can be an instance of, it'll be a scalar,
# a unituple or a tuple.
if isinstance(t_typs, types.UniTuple):
# corner case - all types in isinstance are the same
t_typs = (t_typs.key[0])
if not isinstance(t_typs, types.Tuple):
t_typs = (t_typs, )
for typ in t_typs:
if isinstance(typ, types.Function):
key = typ.key[0] # functions like int(..), float(..), str(..)
elif isinstance(typ, types.ClassType):
key = typ # jitclasses
else:
key = typ.key
# corner cases for bytes, range, ...
# avoid registering those types on `as_numba_type`
types_not_registered = {
bytes: types.Bytes,
range: types.RangeType,
dict: (types.DictType, types.LiteralStrKeyDict),
list: types.List,
tuple: types.BaseTuple,
set: types.Set,
}
if key in types_not_registered:
if isinstance(var_ty, types_not_registered[key]):
return true_impl
continue
if isinstance(typ, types.TypeRef):
# Use of Numba type classes is in general not supported as they do
# not work when the jit is disabled.
if key not in (types.ListType, types.DictType):
msg = ("Numba type classes (except numba.typed.* container "
"types) are not supported.")
raise NumbaTypeError(msg)
# Case for TypeRef (i.e. isinstance(var, typed.List))
# var_ty == ListType[int64] (instance)
# typ == types.ListType (class)
return true_impl if type(var_ty) is key else false_impl
else:
numba_typ = as_numba_type(key)
if var_ty == numba_typ:
return true_impl
elif isinstance(numba_typ, types.ClassType) and \
isinstance(var_ty, types.ClassInstanceType) and \
var_ty.key == numba_typ.instance_type.key:
# check for jitclasses
return true_impl
elif isinstance(numba_typ, types.Container) and \
numba_typ.key[0] == types.undefined:
# check for containers (list, tuple, set, ...)
if isinstance(var_ty, numba_typ.__class__) or \
(isinstance(var_ty, types.BaseTuple) and \
isinstance(numba_typ, types.BaseTuple)):
return true_impl
return false_impl
# -- getattr implementation
def _getattr_raise_attr_exc(obj, name):
# Dummy function for the purpose of creating an overloadable stub from
# which to raise an AttributeError as needed
pass
@overload(_getattr_raise_attr_exc)
def ol__getattr_raise_attr_exc(obj, name):
if not isinstance(name, types.StringLiteral):
raise RequireLiteralValue("argument 'name' must be a literal string")
lname = name.literal_value
message = f"'{obj}' has no attribute '{lname}'"
def impl(obj, name):
raise AttributeError(message)
return impl
@intrinsic
def resolve_getattr(tyctx, obj, name, default):
if not isinstance(name, types.StringLiteral):
raise RequireLiteralValue("argument 'name' must be a literal string")
lname = name.literal_value
fn = tyctx.resolve_getattr(obj, lname)
# Cannot handle things like `getattr(np, 'cos')` as the return type is
# types.Function.
if isinstance(fn, types.Function):
msg = ("Returning function objects is not implemented. "
f"getattr() was requested to return {fn} from attribute "
f"'{lname}' of {obj}.")
raise TypingError(msg)
if fn is None: # No attribute
# if default is not _getattr_default then return the default
if not (isinstance(default, types.NamedTuple) and
default.instance_class == _getattr_default_type):
# it's not the marker default value, so return it
sig = default(obj, name, default)
def impl(cgctx, builder, sig, llargs):
tmp = llargs[-1]
cgctx.nrt.incref(builder, default, tmp)
return tmp
else:
# else wire in raising an AttributeError
fnty = tyctx.resolve_value_type(_getattr_raise_attr_exc)
raise_sig = fnty.get_call_type(tyctx, (obj, name), {})
sig = types.none(obj, name, default)
def impl(cgctx, builder, sig, llargs):
native_impl = cgctx.get_function(fnty, raise_sig)
return native_impl(builder, llargs[:-1])
else: # Attribute present, wire in handing it back to the overload(getattr)
sig = fn(obj, name, default)
if isinstance(fn, types.BoundFunction):
# It's a method on an object
def impl(cgctx, builder, sig, ll_args):
cast_type = fn.this
casted = cgctx.cast(builder, ll_args[0], obj, cast_type)
res = cgctx.get_bound_function(builder, casted, cast_type)
cgctx.nrt.incref(builder, fn, res)
return res
else:
# Else it's some other type of attribute.
# Ensure typing calls occur at typing time, not at lowering
attrty = tyctx.resolve_getattr(obj, lname)
def impl(cgctx, builder, sig, ll_args):
attr_impl = cgctx.get_getattr(obj, lname)
res = attr_impl(cgctx, builder, obj, ll_args[0], lname)
casted = cgctx.cast(builder, res, attrty, fn)
cgctx.nrt.incref(builder, fn, casted)
return casted
return sig, impl
# These are marker objects to indicate "no default has been provided" in a call
_getattr_default_type = namedtuple('_getattr_default_type', '')
_getattr_default = _getattr_default_type()
# getattr with no default arg, obj is an open type and name is forced as a
# literal string. The _getattr_default marker is used to indicate "no default
# was provided".
@overload(getattr, prefer_literal=True)
def ol_getattr_2(obj, name):
def impl(obj, name):
return resolve_getattr(obj, name, _getattr_default)
return impl
# getattr with default arg present, obj is an open type, name is forced as a
# literal string, the "default" is again an open type. Note that the CPython
# definition is: `getattr(object, name[, default]) -> value`, the `default`
# is not a kwarg.
@overload(getattr)
def ol_getattr_3(obj, name, default):
def impl(obj, name, default):
return resolve_getattr(obj, name, default)
return impl
@intrinsic
def resolve_hasattr(tyctx, obj, name):
if not isinstance(name, types.StringLiteral):
raise RequireLiteralValue("argument 'name' must be a literal string")
lname = name.literal_value
fn = tyctx.resolve_getattr(obj, lname)
# Whilst technically the return type could be a types.bool_, the literal
# value is resolvable at typing time. Propagating this literal information
# into the type system allows the compiler to prune branches based on a
# hasattr predicate. As a result the signature is based on literals. This is
# "safe" because the overload requires a literal string so each will be a
# different variant of (obj, literal(name)) -> literal(bool).
if fn is None:
retty = types.literal(False)
else:
retty = types.literal(True)
sig = retty(obj, name)
def impl(cgctx, builder, sig, ll_args):
return cgutils.false_bit if fn is None else cgutils.true_bit
return sig, impl
# hasattr cannot be implemented as a getattr call and then catching
# AttributeError because Numba doesn't support catching anything other than
# "Exception", so lacks the specificity required. Instead this implementation
# tries to resolve the attribute via typing information and returns True/False
# based on that.
@overload(hasattr)
def ol_hasattr(obj, name):
def impl(obj, name):
return resolve_hasattr(obj, name)
return impl
@overload(repr)
def ol_repr_generic(obj):
missing_repr_format = f"<object type:{obj}>"
def impl(obj):
attr = '__repr__'
if hasattr(obj, attr) == True:
return getattr(obj, attr)()
else:
# There's no __str__ or __repr__ defined for this object, return
# something generic
return missing_repr_format
return impl
@overload(str)
def ol_str_generic(object=''):
def impl(object=""):
attr = '__str__'
if hasattr(object, attr) == True:
return getattr(object, attr)()
else:
return repr(object)
return impl