ai-content-maker/.venv/Lib/site-packages/numba/tests/doc_examples/test_examples.py

602 lines
21 KiB
Python

# Contents in this file are referenced from the sphinx-generated docs.
# "magictoken" is used for markers as beginning and ending of example text.
import sys
import unittest
from numba.tests.support import captured_stdout
from numba.core.config import IS_WIN32
class MatplotlibBlocker:
'''Blocks the import of matplotlib, so that doc examples that attempt to
plot the output don't result in plots popping up and blocking testing.'''
def find_spec(self, fullname, path, target=None):
if fullname == 'matplotlib':
msg = 'Blocked import of matplotlib for test suite run'
raise ImportError(msg)
class DocsExamplesTest(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._mpl_blocker = MatplotlibBlocker()
def setUp(self):
sys.meta_path.insert(0, self._mpl_blocker)
def tearDown(self):
sys.meta_path.remove(self._mpl_blocker)
def test_mandelbrot(self):
with captured_stdout():
# magictoken.ex_mandelbrot.begin
from timeit import default_timer as timer
try:
from matplotlib.pylab import imshow, show
have_mpl = True
except ImportError:
have_mpl = False
import numpy as np
from numba import jit
@jit(nopython=True)
def mandel(x, y, max_iters):
"""
Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.
"""
i = 0
c = complex(x,y)
z = 0.0j
for i in range(max_iters):
z = z * z + c
if (z.real * z.real + z.imag * z.imag) >= 4:
return i
return 255
@jit(nopython=True)
def create_fractal(min_x, max_x, min_y, max_y, image, iters):
height = image.shape[0]
width = image.shape[1]
pixel_size_x = (max_x - min_x) / width
pixel_size_y = (max_y - min_y) / height
for x in range(width):
real = min_x + x * pixel_size_x
for y in range(height):
imag = min_y + y * pixel_size_y
color = mandel(real, imag, iters)
image[y, x] = color
return image
image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8)
s = timer()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)
e = timer()
print(e - s)
if have_mpl:
imshow(image)
show()
# magictoken.ex_mandelbrot.end
def test_moving_average(self):
with captured_stdout():
# magictoken.ex_moving_average.begin
import numpy as np
from numba import guvectorize
@guvectorize(['void(float64[:], intp[:], float64[:])'],
'(n),()->(n)')
def move_mean(a, window_arr, out):
window_width = window_arr[0]
asum = 0.0
count = 0
for i in range(window_width):
asum += a[i]
count += 1
out[i] = asum / count
for i in range(window_width, len(a)):
asum += a[i] - a[i - window_width]
out[i] = asum / count
arr = np.arange(20, dtype=np.float64).reshape(2, 10)
print(arr)
print(move_mean(arr, 3))
# magictoken.ex_moving_average.end
def test_nogil(self):
with captured_stdout():
# magictoken.ex_no_gil.begin
import math
import threading
from timeit import repeat
import numpy as np
from numba import jit
nthreads = 4
size = 10**6
def func_np(a, b):
"""
Control function using Numpy.
"""
return np.exp(2.1 * a + 3.2 * b)
@jit('void(double[:], double[:], double[:])', nopython=True,
nogil=True)
def inner_func_nb(result, a, b):
"""
Function under test.
"""
for i in range(len(result)):
result[i] = math.exp(2.1 * a[i] + 3.2 * b[i])
def timefunc(correct, s, func, *args, **kwargs):
"""
Benchmark *func* and print out its runtime.
"""
print(s.ljust(20), end=" ")
# Make sure the function is compiled before the benchmark is
# started
res = func(*args, **kwargs)
if correct is not None:
assert np.allclose(res, correct), (res, correct)
# time it
print('{:>5.0f} ms'.format(min(repeat(
lambda: func(*args, **kwargs), number=5, repeat=2)) * 1000))
return res
def make_singlethread(inner_func):
"""
Run the given function inside a single thread.
"""
def func(*args):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
inner_func(result, *args)
return result
return func
def make_multithread(inner_func, numthreads):
"""
Run the given function inside *numthreads* threads, splitting
its arguments into equal-sized chunks.
"""
def func_mt(*args):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
args = (result,) + args
chunklen = (length + numthreads - 1) // numthreads
# Create argument tuples for each input chunk
chunks = [[arg[i * chunklen:(i + 1) * chunklen] for arg in
args] for i in range(numthreads)]
# Spawn one thread per chunk
threads = [threading.Thread(target=inner_func, args=chunk)
for chunk in chunks]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return result
return func_mt
func_nb = make_singlethread(inner_func_nb)
func_nb_mt = make_multithread(inner_func_nb, nthreads)
a = np.random.rand(size)
b = np.random.rand(size)
correct = timefunc(None, "numpy (1 thread)", func_np, a, b)
timefunc(correct, "numba (1 thread)", func_nb, a, b)
timefunc(correct, "numba (%d threads)" % nthreads, func_nb_mt, a, b)
# magictoken.ex_no_gil.end
def test_vectorize_one_signature(self):
with captured_stdout():
# magictoken.ex_vectorize_one_signature.begin
from numba import vectorize, float64
@vectorize([float64(float64, float64)])
def f(x, y):
return x + y
# magictoken.ex_vectorize_one_signature.end
def test_vectorize_multiple_signatures(self):
with captured_stdout():
# magictoken.ex_vectorize_multiple_signatures.begin
from numba import vectorize, int32, int64, float32, float64
import numpy as np
@vectorize([int32(int32, int32),
int64(int64, int64),
float32(float32, float32),
float64(float64, float64)])
def f(x, y):
return x + y
# magictoken.ex_vectorize_multiple_signatures.end
# magictoken.ex_vectorize_return_call_one.begin
a = np.arange(6)
result = f(a, a)
# result == array([ 0, 2, 4, 6, 8, 10])
# magictoken.ex_vectorize_return_call_one.end
self.assertIsInstance(result, np.ndarray)
correct = np.array([0, 2, 4, 6, 8, 10])
np.testing.assert_array_equal(result, correct)
# magictoken.ex_vectorize_return_call_two.begin
a = np.linspace(0, 1, 6)
result = f(a, a)
# Now, result == array([0. , 0.4, 0.8, 1.2, 1.6, 2. ])
# magictoken.ex_vectorize_return_call_two.end
self.assertIsInstance(result, np.ndarray)
correct = np.array([0., 0.4, 0.8, 1.2, 1.6, 2. ])
np.testing.assert_allclose(result, correct)
# magictoken.ex_vectorize_return_call_three.begin
a = np.arange(12).reshape(3, 4)
# a == array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11]])
result1 = f.reduce(a, axis=0)
# result1 == array([12, 15, 18, 21])
result2 = f.reduce(a, axis=1)
# result2 == array([ 6, 22, 38])
result3 = f.accumulate(a)
# result3 == array([[ 0, 1, 2, 3],
# [ 4, 6, 8, 10],
# [12, 15, 18, 21]])
result4 = f.accumulate(a, axis=1)
# result3 == array([[ 0, 1, 3, 6],
# [ 4, 9, 15, 22],
# [ 8, 17, 27, 38]])
# magictoken.ex_vectorize_return_call_three.end
self.assertIsInstance(result1, np.ndarray)
correct = np.array([12, 15, 18, 21])
np.testing.assert_array_equal(result1, correct)
self.assertIsInstance(result2, np.ndarray)
correct = np.array([6, 22, 38])
np.testing.assert_array_equal(result2, correct)
self.assertIsInstance(result3, np.ndarray)
correct = np.array([
[0, 1, 2, 3],
[4, 6, 8, 10],
[12, 15, 18, 21]
])
np.testing.assert_array_equal(result3, correct)
self.assertIsInstance(result4, np.ndarray)
correct = np.array([
[0, 1, 3, 6],
[4, 9, 15, 22],
[8, 17, 27, 38]
])
np.testing.assert_array_equal(result4, correct)
def test_guvectorize(self):
with captured_stdout():
# magictoken.ex_guvectorize.begin
from numba import guvectorize, int64
import numpy as np
@guvectorize([(int64[:], int64, int64[:])], '(n),()->(n)')
def g(x, y, res):
for i in range(x.shape[0]):
res[i] = x[i] + y
# magictoken.ex_guvectorize.end
# magictoken.ex_guvectorize_call_one.begin
a = np.arange(5)
result = g(a, 2)
# result == array([2, 3, 4, 5, 6])
# magictoken.ex_guvectorize_call_one.end
self.assertIsInstance(result, np.ndarray)
correct = np.array([2, 3, 4, 5, 6])
np.testing.assert_array_equal(result, correct)
# magictoken.ex_guvectorize_call_two.begin
a = np.arange(6).reshape(2, 3)
# a == array([[0, 1, 2],
# [3, 4, 5]])
result1 = g(a, 10)
# result1 == array([[10, 11, 12],
# [13, 14, 15]])
result2 = g(a, np.array([10, 20]))
g(a, np.array([10, 20]))
# result2 == array([[10, 11, 12],
# [23, 24, 25]])
# magictoken.ex_guvectorize_call_two.end
self.assertIsInstance(result1, np.ndarray)
correct = np.array([[10, 11, 12], [13, 14, 15]])
np.testing.assert_array_equal(result1, correct)
self.assertIsInstance(result2, np.ndarray)
correct = np.array([[10, 11, 12], [23, 24, 25]])
np.testing.assert_array_equal(result2, correct)
def test_guvectorize_scalar_return(self):
with captured_stdout():
# magictoken.ex_guvectorize_scalar_return.begin
from numba import guvectorize, int64
import numpy as np
@guvectorize([(int64[:], int64, int64[:])], '(n),()->()')
def g(x, y, res):
acc = 0
for i in range(x.shape[0]):
acc += x[i] + y
res[0] = acc
# magictoken.ex_guvectorize_scalar_return.end
# magictoken.ex_guvectorize_scalar_return_call.begin
a = np.arange(5)
result = g(a, 2)
# At this point, result == 20.
# magictoken.ex_guvectorize_scalar_return_call.end
self.assertIsInstance(result, np.integer)
self.assertEqual(result, 20)
def test_guvectorize_overwrite(self):
with captured_stdout():
# magictoken.ex_guvectorize_overwrite.begin
from numba import guvectorize, float64
import numpy as np
@guvectorize([(float64[:], float64[:])], '()->()')
def init_values(invals, outvals):
invals[0] = 6.5
outvals[0] = 4.2
# magictoken.ex_guvectorize_overwrite.end
# magictoken.ex_guvectorize_overwrite_call_one.begin
invals = np.zeros(shape=(3, 3), dtype=np.float64)
# invals == array([[6.5, 6.5, 6.5],
# [6.5, 6.5, 6.5],
# [6.5, 6.5, 6.5]])
outvals = init_values(invals)
# outvals == array([[4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2]])
# magictoken.ex_guvectorize_overwrite_call_one.end
self.assertIsInstance(invals, np.ndarray)
correct = np.array([
[6.5, 6.5, 6.5],
[6.5, 6.5, 6.5],
[6.5, 6.5, 6.5]])
np.testing.assert_array_equal(invals, correct)
self.assertIsInstance(outvals, np.ndarray)
correct = np.array([
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2]])
np.testing.assert_array_equal(outvals, correct)
# magictoken.ex_guvectorize_overwrite_call_two.begin
invals = np.zeros(shape=(3, 3), dtype=np.float32)
# invals == array([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]], dtype=float32)
outvals = init_values(invals)
# outvals == array([[4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2]])
print(invals)
# invals == array([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]], dtype=float32)
# magictoken.ex_guvectorize_overwrite_call_two.end
self.assertIsInstance(invals, np.ndarray)
correct = np.array([
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], dtype=np.float32)
np.testing.assert_array_equal(invals, correct)
self.assertIsInstance(outvals, np.ndarray)
correct = np.array([
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2]])
np.testing.assert_array_equal(outvals, correct)
# magictoken.ex_guvectorize_overwrite_call_three.begin
@guvectorize(
[(float64[:], float64[:])],
'()->()',
writable_args=('invals',)
)
def init_values(invals, outvals):
invals[0] = 6.5
outvals[0] = 4.2
invals = np.zeros(shape=(3, 3), dtype=np.float32)
# invals == array([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]], dtype=float32)
outvals = init_values(invals)
# outvals == array([[4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2]])
print(invals)
# invals == array([[6.5, 6.5, 6.5],
# [6.5, 6.5, 6.5],
# [6.5, 6.5, 6.5]], dtype=float32)
# magictoken.ex_guvectorize_overwrite_call_three.end
self.assertIsInstance(invals, np.ndarray)
correct = np.array([
[6.5, 6.5, 6.5],
[6.5, 6.5, 6.5],
[6.5, 6.5, 6.5]])
np.testing.assert_array_equal(invals, correct)
self.assertIsInstance(outvals, np.ndarray)
correct = np.array([
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2]])
np.testing.assert_array_equal(outvals, correct)
def test_vectorize_dynamic(self):
with captured_stdout():
# magictoken.ex_vectorize_dynamic.begin
from numba import vectorize
@vectorize
def f(x, y):
return x * y
# magictoken.ex_vectorize_dynamic.end
# magictoken.ex_vectorize_dynamic_call_one.begin
result = f(3,4)
# result == 12
print(f.types)
# ['ll->l']
# magictoken.ex_vectorize_dynamic_call_one.end
self.assertEqual(result, 12)
if IS_WIN32:
correct = ['ll->q']
else:
correct = ['ll->l']
self.assertEqual(f.types, correct)
# magictoken.ex_vectorize_dynamic_call_two.begin
result = f(1.,2.)
# result == 2.0
print(f.types)
# ['ll->l', 'dd->d']
# magictoken.ex_vectorize_dynamic_call_two.end
self.assertEqual(result, 2.0)
if IS_WIN32:
correct = ['ll->q', 'dd->d']
else:
correct = ['ll->l', 'dd->d']
self.assertEqual(f.types, correct)
# magictoken.ex_vectorize_dynamic_call_three.begin
result = f(1,2.)
# result == 2.0
print(f.types)
# ['ll->l', 'dd->d']
# magictoken.ex_vectorize_dynamic_call_three.end
self.assertEqual(result, 2.0)
if IS_WIN32:
correct = ['ll->q', 'dd->d']
else:
correct = ['ll->l', 'dd->d']
self.assertEqual(f.types, correct)
# magictoken.ex_vectorize_dynamic_call_four.begin
@vectorize
def g(a, b):
return a / b
print(g(2.,3.))
# 0.66666666666666663
print(g(2,3))
# 0.66666666666666663
print(g.types)
# ['dd->d']
# magictoken.ex_vectorize_dynamic_call_four.end
correct = ['dd->d']
self.assertEqual(g.types, correct)
def test_guvectorize_dynamic(self):
with captured_stdout():
# magictoken.ex_guvectorize_dynamic.begin
from numba import guvectorize
import numpy as np
@guvectorize('(n),()->(n)')
def g(x, y, res):
for i in range(x.shape[0]):
res[i] = x[i] + y
# magictoken.ex_guvectorize_dynamic.end
# magictoken.ex_guvectorize_dynamic_call_one.begin
x = np.arange(5, dtype=np.int64)
y = 10
res = np.zeros_like(x)
g(x, y, res)
# res == array([10, 11, 12, 13, 14])
print(g.types)
# ['ll->l']
# magictoken.ex_guvectorize_dynamic_call_one.end
correct = np.array([10, 11, 12, 13, 14])
np.testing.assert_array_equal(res, correct)
if IS_WIN32:
correct = ['qq->q']
else:
correct = ['ll->l']
self.assertEqual(g.types, correct)
# magictoken.ex_guvectorize_dynamic_call_two.begin
x = np.arange(5, dtype=np.double)
y = 2.2
res = np.zeros_like(x)
g(x, y, res)
# res == array([2.2, 3.2, 4.2, 5.2, 6.2])
# magictoken.ex_guvectorize_dynamic_call_two.end
# magictoken.ex_guvectorize_dynamic_call_three.begin
print(g.types) # shorthand for g.ufunc.types
# ['ll->l', 'dd->d']
# magictoken.ex_guvectorize_dynamic_call_three.end
if IS_WIN32:
correct = ['qq->q', 'dd->d']
else:
correct = ['ll->l', 'dd->d']
self.assertEqual(g.types, correct)
# magictoken.ex_guvectorize_dynamic_call_four.begin
x = np.arange(5, dtype=np.int64)
y = 2.2
res = np.zeros_like(x)
g(x, y, res)
print(res)
# res == array([2, 3, 4, 5, 6])
# magictoken.ex_guvectorize_dynamic_call_four.end
correct = np.array([2, 3, 4, 5, 6])
np.testing.assert_array_equal(res, correct)
if __name__ == '__main__':
unittest.main()