ai-content-maker/.venv/Lib/site-packages/numba/tests/npyufunc/test_ufuncbuilding.py

401 lines
14 KiB
Python

import numpy as np
from numba.np.ufunc.ufuncbuilder import GUFuncBuilder
from numba import vectorize, guvectorize
from numba.np.ufunc import PyUFunc_One
from numba.np.ufunc.dufunc import DUFunc as UFuncBuilder
from numba.tests.support import tag, TestCase
from numba.core import config
import unittest
class TestUfuncBuilding(TestCase):
def test_basic_ufunc(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
ufb = UFuncBuilder(add)
cres = ufb.add("int32(int32, int32)")
self.assertFalse(cres.objectmode)
cres = ufb.add("int64(int64, int64)")
self.assertFalse(cres.objectmode)
ufunc = ufb.build_ufunc()
def check(a):
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
self.assertEqual(b.dtype, a.dtype)
a = np.arange(12, dtype='int32')
check(a)
# Non-contiguous dimension
a = a[::2]
check(a)
a = a.reshape((2, 3))
check(a)
# Metadata
self.assertEqual(ufunc.__name__, "add")
self.assertIn("An addition", ufunc.__doc__)
def test_ufunc_struct(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
ufb = UFuncBuilder(add)
cres = ufb.add("complex64(complex64, complex64)")
self.assertFalse(cres.objectmode)
ufunc = ufb.build_ufunc()
def check(a):
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
self.assertEqual(b.dtype, a.dtype)
a = np.arange(12, dtype='complex64') + 1j
check(a)
# Non-contiguous dimension
a = a[::2]
check(a)
a = a.reshape((2, 3))
check(a)
def test_ufunc_forceobj(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
ufb = UFuncBuilder(add, targetoptions={'forceobj': True})
cres = ufb.add("int32(int32, int32)")
self.assertTrue(cres.objectmode)
ufunc = ufb.build_ufunc()
a = np.arange(10, dtype='int32')
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
def test_nested_call(self):
"""
Check nested call to an implicitly-typed ufunc.
"""
from numba.tests.npyufunc.ufuncbuilding_usecases import outer
builder = UFuncBuilder(outer,
targetoptions={'nopython': True})
builder.add("(int64, int64)")
ufunc = builder.build_ufunc()
self.assertEqual(ufunc(-1, 3), 2)
def test_nested_call_explicit(self):
"""
Check nested call to an explicitly-typed ufunc.
"""
from numba.tests.npyufunc.ufuncbuilding_usecases import outer_explicit
builder = UFuncBuilder(outer_explicit,
targetoptions={'nopython': True})
builder.add("(int64, int64)")
ufunc = builder.build_ufunc()
self.assertEqual(ufunc(-1, 3), 2)
class TestUfuncBuildingJitDisabled(TestUfuncBuilding):
def setUp(self):
self.old_disable_jit = config.DISABLE_JIT
config.DISABLE_JIT = False
def tearDown(self):
config.DISABLE_JIT = self.old_disable_jit
class TestGUfuncBuilding(TestCase):
def test_basic_gufunc(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd
gufb = GUFuncBuilder(guadd, "(x, y),(x, y)->(x, y)")
cres = gufb.add("void(int32[:,:], int32[:,:], int32[:,:])")
self.assertFalse(cres.objectmode)
ufunc = gufb.build_ufunc()
a = np.arange(10, dtype="int32").reshape(2, 5)
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
self.assertEqual(b.dtype, np.dtype('int32'))
# Metadata
self.assertEqual(ufunc.__name__, "guadd")
self.assertIn("A generalized addition", ufunc.__doc__)
def test_gufunc_struct(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd
gufb = GUFuncBuilder(guadd, "(x, y),(x, y)->(x, y)")
cres = gufb.add("void(complex64[:,:], complex64[:,:], complex64[:,:])")
self.assertFalse(cres.objectmode)
ufunc = gufb.build_ufunc()
a = np.arange(10, dtype="complex64").reshape(2, 5) + 1j
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
def test_gufunc_struct_forceobj(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd
gufb = GUFuncBuilder(guadd, "(x, y),(x, y)->(x, y)",
targetoptions=dict(forceobj=True))
cres = gufb.add("void(complex64[:,:], complex64[:,:], complex64[:,"
":])")
self.assertTrue(cres.objectmode)
ufunc = gufb.build_ufunc()
a = np.arange(10, dtype="complex64").reshape(2, 5) + 1j
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
class TestGUfuncBuildingJitDisabled(TestGUfuncBuilding):
def setUp(self):
self.old_disable_jit = config.DISABLE_JIT
config.DISABLE_JIT = False
def tearDown(self):
config.DISABLE_JIT = self.old_disable_jit
class TestVectorizeDecor(TestCase):
_supported_identities = [0, 1, None, "reorderable"]
def test_vectorize(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
ufunc = vectorize(['int32(int32, int32)'])(add)
a = np.arange(10, dtype='int32')
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
def test_vectorize_objmode(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
ufunc = vectorize(['int32(int32, int32)'], forceobj=True)(add)
a = np.arange(10, dtype='int32')
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
def test_vectorize_bool_return(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import equals
ufunc = vectorize(['bool_(int32, int32)'])(equals)
a = np.arange(10, dtype='int32')
r = ufunc(a,a)
self.assertPreciseEqual(r, np.ones(r.shape, dtype=np.bool_))
def test_vectorize_identity(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
sig = 'int32(int32, int32)'
for identity in self._supported_identities:
ufunc = vectorize([sig], identity=identity)(add)
expected = None if identity == 'reorderable' else identity
self.assertEqual(ufunc.identity, expected)
# Default value is None
ufunc = vectorize([sig])(add)
self.assertIs(ufunc.identity, None)
# Invalid values
with self.assertRaises(ValueError):
vectorize([sig], identity='none')(add)
with self.assertRaises(ValueError):
vectorize([sig], identity=2)(add)
def test_vectorize_no_args(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add
a = np.linspace(0,1,10)
b = np.linspace(1,2,10)
ufunc = vectorize(add)
self.assertPreciseEqual(ufunc(a,b), a + b)
ufunc2 = vectorize(add)
c = np.empty(10)
ufunc2(a, b, c)
self.assertPreciseEqual(c, a + b)
def test_vectorize_only_kws(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import mul
a = np.linspace(0,1,10)
b = np.linspace(1,2,10)
ufunc = vectorize(identity=PyUFunc_One, nopython=True)(mul)
self.assertPreciseEqual(ufunc(a,b), a * b)
def test_vectorize_output_kwarg(self):
"""
Passing the output array as a keyword argument (issue #1867).
"""
def check(ufunc):
a = np.arange(10, 16, dtype='int32')
out = np.zeros_like(a)
got = ufunc(a, a, out=out)
self.assertIs(got, out)
self.assertPreciseEqual(out, a + a)
with self.assertRaises(TypeError):
ufunc(a, a, zzz=out)
# With explicit sigs
from numba.tests.npyufunc.ufuncbuilding_usecases import add
ufunc = vectorize(['int32(int32, int32)'], nopython=True)(add)
check(ufunc)
# With implicit sig
ufunc = vectorize(nopython=True)(add)
check(ufunc) # compiling
check(ufunc) # after compiling
def test_guvectorize(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd
ufunc = guvectorize(['(int32[:,:], int32[:,:], int32[:,:])'],
"(x,y),(x,y)->(x,y)")(guadd)
a = np.arange(10, dtype='int32').reshape(2, 5)
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
def test_guvectorize_no_output(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd
ufunc = guvectorize(['(int32[:,:], int32[:,:], int32[:,:])'],
"(x,y),(x,y),(x,y)")(guadd)
a = np.arange(10, dtype='int32').reshape(2, 5)
out = np.zeros_like(a)
ufunc(a, a, out)
self.assertPreciseEqual(a + a, out)
def test_guvectorize_objectmode(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd_obj
ufunc = guvectorize(['(int32[:,:], int32[:,:], int32[:,:])'],
"(x,y),(x,y)->(x,y)", forceobj=True)(guadd_obj)
a = np.arange(10, dtype='int32').reshape(2, 5)
b = ufunc(a, a)
self.assertPreciseEqual(a + a, b)
def test_guvectorize_scalar_objectmode(self):
"""
Test passing of scalars to object mode gufuncs.
"""
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd_scalar_obj
ufunc = guvectorize(['(int32[:,:], int32, int32[:,:])'],
"(x,y),()->(x,y)", forceobj=True)(guadd_scalar_obj)
a = np.arange(10, dtype='int32').reshape(2, 5)
b = ufunc(a, 3)
self.assertPreciseEqual(a + 3, b)
def test_guvectorize_error_in_objectmode(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guerror, \
MyException
ufunc = guvectorize(['(int32[:,:], int32[:,:], int32[:,:])'],
"(x,y),(x,y)->(x,y)", forceobj=True)(guerror)
a = np.arange(10, dtype='int32').reshape(2, 5)
with self.assertRaises(MyException):
ufunc(a, a)
def test_guvectorize_identity(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import add, guadd
args = (['(int32[:,:], int32[:,:], int32[:,:])'], "(x,y),(x,y)->(x,y)")
for identity in self._supported_identities:
ufunc = guvectorize(*args, identity=identity)(guadd)
expected = None if identity == 'reorderable' else identity
self.assertEqual(ufunc.identity, expected)
# Default value is None
ufunc = guvectorize(*args)(guadd)
self.assertIs(ufunc.identity, None)
# Invalid values
with self.assertRaises(ValueError):
guvectorize(*args, identity='none')(add)
with self.assertRaises(ValueError):
guvectorize(*args, identity=2)(add)
def test_guvectorize_invalid_layout(self):
from numba.tests.npyufunc.ufuncbuilding_usecases import guadd
sigs = ['(int32[:,:], int32[:,:], int32[:,:])']
# Syntax error
with self.assertRaises(ValueError) as raises:
guvectorize(sigs, ")-:")(guadd)
self.assertIn("bad token in signature", str(raises.exception))
# Output shape can't be inferred from inputs
with self.assertRaises(NameError) as raises:
guvectorize(sigs, "(x,y),(x,y)->(x,z,v)")(guadd)
self.assertEqual(str(raises.exception),
"undefined output symbols: v,z")
# Arrow but no outputs
with self.assertRaises(ValueError) as raises:
guvectorize(sigs, "(x,y),(x,y),(x,y)->")(guadd)
# (error message depends on Numpy version)
class TestNEP13WithoutSignature(TestCase):
def test_all(self):
# note: no signatures specified
@vectorize(nopython=True)
def new_ufunc(hundreds, tens, ones):
return 100*hundreds + 10*tens + ones
# https://numpy.org/neps/nep-0013-ufunc-overrides.html
class NEP13Array:
def __init__(self, array):
self.array = array
def __array__(self):
return self.array
def tolist(self):
return self.array.tolist()
def __array_ufunc__(self, ufunc, method, *args, **kwargs):
if method != "__call__":
return NotImplemented
return NEP13Array(ufunc(*[np.asarray(x) for x in args], **kwargs))
# give it integers
a = np.array([1, 2, 3], dtype=np.int64)
b = np.array([4, 5, 6], dtype=np.int64)
c = np.array([7, 8, 9], dtype=np.int64)
all_np = new_ufunc(a, b, c)
self.assertIsInstance(all_np, np.ndarray)
self.assertEqual(all_np.tolist(), [147, 258, 369])
nep13_1 = new_ufunc(NEP13Array(a), b, c)
self.assertIsInstance(nep13_1, NEP13Array)
self.assertEqual(nep13_1.tolist(), [147, 258, 369])
nep13_2 = new_ufunc(a, NEP13Array(b), c)
self.assertIsInstance(nep13_2, NEP13Array)
self.assertEqual(nep13_2.tolist(), [147, 258, 369])
nep13_3 = new_ufunc(a, b, NEP13Array(c))
self.assertIsInstance(nep13_3, NEP13Array)
self.assertEqual(nep13_3.tolist(), [147, 258, 369])
# give it floats
a = np.array([1.1, 2.2, 3.3], dtype=np.float64)
b = np.array([4.4, 5.5, 6.6], dtype=np.float64)
c = np.array([7.7, 8.8, 9.9], dtype=np.float64)
all_np = new_ufunc(a, b, c)
self.assertIsInstance(all_np, np.ndarray)
self.assertEqual(all_np.tolist(), [161.7, 283.8, 405.9])
nep13_1 = new_ufunc(NEP13Array(a), b, c)
self.assertIsInstance(nep13_1, NEP13Array)
self.assertEqual(nep13_1.tolist(), [161.7, 283.8, 405.9])
nep13_2 = new_ufunc(a, NEP13Array(b), c)
self.assertIsInstance(nep13_2, NEP13Array)
self.assertEqual(nep13_2.tolist(), [161.7, 283.8, 405.9])
nep13_3 = new_ufunc(a, b, NEP13Array(c))
self.assertIsInstance(nep13_3, NEP13Array)
self.assertEqual(nep13_3.tolist(), [161.7, 283.8, 405.9])
class TestVectorizeDecorJitDisabled(TestVectorizeDecor):
def setUp(self):
self.old_disable_jit = config.DISABLE_JIT
config.DISABLE_JIT = False
def tearDown(self):
config.DISABLE_JIT = self.old_disable_jit
if __name__ == '__main__':
unittest.main()