ai-content-maker/.venv/Lib/site-packages/numba/tests/test_array_manipulation.py

1549 lines
52 KiB
Python

from functools import partial
from itertools import permutations
import numpy as np
import unittest
from numba import jit, njit, from_dtype, typeof
from numba.core.errors import TypingError
from numba.core import types, errors
from numba.tests.support import TestCase, MemoryLeakMixin
enable_pyobj_flags = {'forceobj': True}
no_pyobj_flags = {'_nrt': True, 'nopython': True}
def from_generic(pyfuncs_to_use):
"""Decorator for generic check functions.
Iterates over 'pyfuncs_to_use', calling 'func' with the iterated
item as first argument. Example:
@from_generic(numpy_array_reshape, array_reshape)
def check_only_shape(pyfunc, arr, shape, expected_shape):
# Only check Numba result to avoid Numpy bugs
self.memory_leak_setup()
got = generic_run(pyfunc, arr, shape)
self.assertEqual(got.shape, expected_shape)
self.assertEqual(got.size, arr.size)
del got
self.memory_leak_teardown()
"""
def decorator(func):
def result(*args, **kwargs):
return [func(pyfunc, *args, **kwargs) for pyfunc in pyfuncs_to_use]
return result
return decorator
@njit
def array_reshape(arr, newshape):
return arr.reshape(newshape)
@njit
def numpy_array_reshape(arr, newshape):
return np.reshape(arr, newshape)
def numpy_broadcast_to(arr, shape):
return np.broadcast_to(arr, shape)
def numpy_broadcast_shapes(*args):
return np.broadcast_shapes(*args)
def numpy_broadcast_arrays(*args):
return np.broadcast_arrays(*args)
def numpy_broadcast_to_indexing(arr, shape, idx):
return np.broadcast_to(arr, shape)[idx]
def flatten_array(a):
return a.flatten()
def ravel_array(a):
return a.ravel()
def ravel_array_size(a):
return a.ravel().size
def numpy_ravel_array(a):
return np.ravel(a)
def transpose_array(a):
return a.transpose()
def numpy_transpose_array(a):
return np.transpose(a)
@njit
def numpy_transpose_array_axes_kwarg(arr, axes):
return np.transpose(arr, axes=axes)
@njit
def numpy_transpose_array_axes_kwarg_copy(arr, axes):
return np.transpose(arr, axes=axes).copy()
@njit
def array_transpose_axes(arr, axes):
return arr.transpose(axes)
@njit
def array_transpose_axes_copy(arr, axes):
return arr.transpose(axes).copy()
@njit
def transpose_issue_4708(m, n):
r1 = np.reshape(np.arange(m * n * 3), (m, 3, n))
r2 = np.reshape(np.arange(n * 3), (n, 3))
r_dif = (r1 - r2.T).T
r_dif = np.transpose(r_dif, (2, 0, 1))
z = r_dif + 1
return z
def squeeze_array(a):
return a.squeeze()
def expand_dims(a, axis):
return np.expand_dims(a, axis)
def atleast_1d(*args):
return np.atleast_1d(*args)
def atleast_2d(*args):
return np.atleast_2d(*args)
def atleast_3d(*args):
return np.atleast_3d(*args)
def as_strided1(a):
# as_strided() with implicit shape
strides = (a.strides[0] // 2,) + a.strides[1:]
return np.lib.stride_tricks.as_strided(a, strides=strides)
def as_strided2(a):
# Rolling window example as in https://github.com/numba/numba/issues/1884
window = 3
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
@njit
def sliding_window_view(x, window_shape, axis=None):
return np.lib.stride_tricks.sliding_window_view(x, window_shape, axis=axis)
def bad_index(arr, arr2d):
x = arr.x,
y = arr.y
# note that `x` is a tuple, which causes a new axis to be created.
arr2d[x, y] = 1.0
def bad_float_index(arr):
# 2D index required for this function because 1D index
# fails typing
return arr[1, 2.0]
def numpy_fill_diagonal(arr, val, wrap=False):
return np.fill_diagonal(arr, val, wrap)
def numpy_shape(arr):
return np.shape(arr)
def numpy_flatnonzero(a):
return np.flatnonzero(a)
def numpy_argwhere(a):
return np.argwhere(a)
def numpy_resize(a, new_shape):
return np.resize(a, new_shape)
class TestArrayManipulation(MemoryLeakMixin, TestCase):
"""
Check shape-changing operations on arrays.
"""
def test_array_reshape(self):
pyfuncs_to_use = [array_reshape, numpy_array_reshape]
def generic_run(pyfunc, arr, shape):
return pyfunc(arr, shape)
@from_generic(pyfuncs_to_use)
def check(pyfunc, arr, shape):
expected = pyfunc.py_func(arr, shape)
self.memory_leak_setup()
got = generic_run(pyfunc, arr, shape)
self.assertPreciseEqual(got, expected)
del got
self.memory_leak_teardown()
@from_generic(pyfuncs_to_use)
def check_only_shape(pyfunc, arr, shape, expected_shape):
# Only check Numba result to avoid Numpy bugs
self.memory_leak_setup()
got = generic_run(pyfunc, arr, shape)
self.assertEqual(got.shape, expected_shape)
self.assertEqual(got.size, arr.size)
del got
self.memory_leak_teardown()
@from_generic(pyfuncs_to_use)
def check_err_shape(pyfunc, arr, shape):
with self.assertRaises(NotImplementedError) as raises:
generic_run(pyfunc, arr, shape)
self.assertEqual(str(raises.exception),
"incompatible shape for array")
@from_generic(pyfuncs_to_use)
def check_err_size(pyfunc, arr, shape):
with self.assertRaises(ValueError) as raises:
generic_run(pyfunc, arr, shape)
self.assertEqual(str(raises.exception),
"total size of new array must be unchanged")
@from_generic(pyfuncs_to_use)
def check_err_multiple_negative(pyfunc, arr, shape):
with self.assertRaises(ValueError) as raises:
generic_run(pyfunc, arr, shape)
self.assertEqual(str(raises.exception),
"multiple negative shape values")
# C-contiguous
arr = np.arange(24)
check(arr, (24,))
check(arr, (4, 6))
check(arr, (8, 3))
check(arr, (8, 1, 3))
check(arr, (1, 8, 1, 1, 3, 1))
arr = np.arange(24).reshape((2, 3, 4))
check(arr, (24,))
check(arr, (4, 6))
check(arr, (8, 3))
check(arr, (8, 1, 3))
check(arr, (1, 8, 1, 1, 3, 1))
check_err_size(arr, ())
check_err_size(arr, (25,))
check_err_size(arr, (8, 4))
arr = np.arange(24).reshape((1, 8, 1, 1, 3, 1))
check(arr, (24,))
check(arr, (4, 6))
check(arr, (8, 3))
check(arr, (8, 1, 3))
# F-contiguous
arr = np.arange(24).reshape((2, 3, 4)).T
check(arr, (4, 3, 2))
check(arr, (1, 4, 1, 3, 1, 2, 1))
check_err_shape(arr, (2, 3, 4))
check_err_shape(arr, (6, 4))
check_err_shape(arr, (2, 12))
# Test negative shape value
arr = np.arange(25).reshape(5,5)
check(arr, -1)
check(arr, (-1,))
check(arr, (-1, 5))
check(arr, (5, -1, 5))
check(arr, (5, 5, -1))
check_err_size(arr, (-1, 4))
check_err_multiple_negative(arr, (-1, -2, 5, 5))
check_err_multiple_negative(arr, (5, 5, -1, -1))
# 0-sized arrays
def check_empty(arr):
check(arr, 0)
check(arr, (0,))
check(arr, (1, 0, 2))
check(arr, (0, 55, 1, 0, 2))
# -1 is buggy in Numpy with 0-sized arrays
check_only_shape(arr, -1, (0,))
check_only_shape(arr, (-1,), (0,))
check_only_shape(arr, (0, -1), (0, 0))
check_only_shape(arr, (4, -1), (4, 0))
check_only_shape(arr, (-1, 0, 4), (0, 0, 4))
check_err_size(arr, ())
check_err_size(arr, 1)
check_err_size(arr, (1, 2))
arr = np.array([])
check_empty(arr)
check_empty(arr.reshape((3, 2, 0)))
# Exceptions leak references
self.disable_leak_check()
def test_array_transpose_axes(self):
pyfuncs_to_use = [numpy_transpose_array_axes_kwarg,
numpy_transpose_array_axes_kwarg_copy,
array_transpose_axes,
array_transpose_axes_copy]
@from_generic(pyfuncs_to_use)
def check(pyfunc, arr, axes):
expected = pyfunc.py_func(arr, axes)
got = pyfunc(arr, axes)
self.assertPreciseEqual(got, expected)
self.assertEqual(got.flags.f_contiguous,
expected.flags.f_contiguous)
self.assertEqual(got.flags.c_contiguous,
expected.flags.c_contiguous)
@from_generic(pyfuncs_to_use)
def check_err_axis_repeated(pyfunc, arr, axes):
with self.assertRaises(ValueError) as raises:
pyfunc(arr, axes)
self.assertEqual(str(raises.exception),
"repeated axis in transpose")
@from_generic(pyfuncs_to_use)
def check_err_axis_oob(pyfunc, arr, axes):
with self.assertRaises(ValueError) as raises:
pyfunc(arr, axes)
self.assertEqual(str(raises.exception),
"axis is out of bounds for array of given dimension")
@from_generic(pyfuncs_to_use)
def check_err_invalid_args(pyfunc, arr, axes):
with self.assertRaises((TypeError, TypingError)):
pyfunc(arr, axes)
arrs = [np.arange(24),
np.arange(24).reshape(4, 6),
np.arange(24).reshape(2, 3, 4),
np.arange(24).reshape(1, 2, 3, 4),
np.arange(64).reshape(8, 4, 2)[::3,::2,:]]
for i in range(len(arrs)):
# First check `None`, the default, which is to reverse dims
check(arrs[i], None)
# Check supplied axis permutations
for axes in permutations(tuple(range(arrs[i].ndim))):
ndim = len(axes)
neg_axes = tuple([x - ndim for x in axes])
check(arrs[i], axes)
check(arrs[i], neg_axes)
@from_generic([transpose_issue_4708])
def check_issue_4708(pyfunc, m, n):
expected = pyfunc.py_func(m, n)
got = pyfunc(m, n)
# values in arrays are equals,
# but stronger assertions not hold (layout and strides equality)
np.testing.assert_equal(got, expected)
check_issue_4708(3, 2)
check_issue_4708(2, 3)
check_issue_4708(5, 4)
# Exceptions leak references
self.disable_leak_check()
check_err_invalid_args(arrs[1], "foo")
check_err_invalid_args(arrs[1], ("foo",))
check_err_invalid_args(arrs[1], 5.3)
check_err_invalid_args(arrs[2], (1.2, 5))
check_err_axis_repeated(arrs[1], (0, 0))
check_err_axis_repeated(arrs[2], (2, 0, 0))
check_err_axis_repeated(arrs[3], (3, 2, 1, 1))
check_err_axis_oob(arrs[0], (1,))
check_err_axis_oob(arrs[0], (-2,))
check_err_axis_oob(arrs[1], (0, 2))
check_err_axis_oob(arrs[1], (-3, 2))
check_err_axis_oob(arrs[1], (0, -3))
check_err_axis_oob(arrs[2], (3, 1, 2))
check_err_axis_oob(arrs[2], (-4, 1, 2))
check_err_axis_oob(arrs[3], (3, 1, 2, 5))
check_err_axis_oob(arrs[3], (3, 1, 2, -5))
with self.assertRaises(TypingError) as e:
jit(nopython=True)(numpy_transpose_array)((np.array([0, 1]),))
self.assertIn("np.transpose does not accept tuples",
str(e.exception))
def test_numpy_resize_basic(self):
pyfunc = numpy_resize
cfunc = njit(pyfunc)
def inputs():
# Taken from https://github.com/numpy/numpy/blob/f0b2fca91a1f5f50ff696895072f6fe9e69c1466/numpy/core/tests/test_numeric.py#L24-L64 noqa: E501
yield np.array([[1, 2], [3, 4]]), (2, 4)
yield np.array([[1, 2], [3, 4]]), (4, 2)
yield np.array([[1, 2], [3, 4]]), (4, 3)
yield np.array([[1, 2], [3, 4]]), (0,)
yield np.array([[1, 2], [3, 4]]), (0, 2)
yield np.array([[1, 2], [3, 4]]), (2, 0)
yield np.zeros(0, dtype = float), (2, 1)
# other
yield np.array([[1, 2], [3, 4]]), (4,)
yield np.array([[1, 2], [3, 4]]), 4
yield np.zeros((1, 3), dtype = int), (2, 1)
yield np.array([], dtype = float), (4, 2)
yield [0, 1, 2, 3], (2, 3)
yield 4, (2, 3)
for a, new_shape in inputs():
self.assertPreciseEqual(pyfunc(a, new_shape), cfunc(a, new_shape))
def test_numpy_resize_exception(self):
# Exceptions leak references
self.disable_leak_check()
cfunc = njit(numpy_resize)
with self.assertRaises(TypingError) as raises:
cfunc("abc", (2, 3))
self.assertIn(('The argument "a" must be array-like'),
str(raises.exception))
with self.assertRaises(TypingError) as raises:
cfunc(np.array([[0,1],[2,3]]), "abc")
self.assertIn(('The argument "new_shape" must be an integer or '
'a tuple of integers'),
str(raises.exception))
with self.assertRaises(ValueError) as raises:
cfunc(np.array([[0,1],[2,3]]), (-2, 3))
self.assertIn(('All elements of `new_shape` must be non-negative'),
str(raises.exception))
with self.assertRaises(ValueError) as raises:
cfunc(np.array([[0,1],[2,3]]), -4)
self.assertIn(('All elements of `new_shape` must be non-negative'),
str(raises.exception))
def test_expand_dims(self):
pyfunc = expand_dims
cfunc = njit(pyfunc)
def check(arr, axis):
expected = pyfunc(arr, axis)
self.memory_leak_setup()
got = cfunc(arr, axis)
self.assertPreciseEqual(got, expected)
del got
self.memory_leak_teardown()
def check_all_axes(arr):
for axis in range(-arr.ndim - 1, arr.ndim + 1):
check(arr, axis)
# 1d
arr = np.arange(5)
check_all_axes(arr)
# 3d (C, F, A)
arr = np.arange(24).reshape((2, 3, 4))
check_all_axes(arr)
check_all_axes(arr.T)
check_all_axes(arr[::-1])
# 0d
arr = np.array(42)
check_all_axes(arr)
def test_expand_dims_exceptions(self):
pyfunc = expand_dims
cfunc = jit(nopython=True)(pyfunc)
arr = np.arange(5)
with self.assertTypingError() as raises:
cfunc('hello', 3)
self.assertIn('First argument "a" must be an array', str(raises.exception))
with self.assertTypingError() as raises:
cfunc(arr, 'hello')
self.assertIn('Argument "axis" must be an integer', str(raises.exception))
def check_atleast_nd(self, pyfunc, cfunc):
def check_result(got, expected):
# We would like to check the result has the same contiguity,
# but we can't rely on the "flags" attribute when there are
# 1-sized dimensions.
self.assertStridesEqual(got, expected)
self.assertPreciseEqual(got.flatten(), expected.flatten())
def check_single(arg):
check_result(cfunc(arg), pyfunc(arg))
def check_tuple(*args):
expected_tuple = pyfunc(*args)
got_tuple = cfunc(*args)
self.assertEqual(len(got_tuple), len(expected_tuple))
for got, expected in zip(got_tuple, expected_tuple):
check_result(got, expected)
# 0d
a1 = np.array(42)
a2 = np.array(5j)
check_single(a1)
check_tuple(a1, a2)
# 1d
b1 = np.arange(5)
b2 = np.arange(6) + 1j
b3 = b1[::-1]
check_single(b1)
check_tuple(b1, b2, b3)
# 2d
c1 = np.arange(6).reshape((2, 3))
c2 = c1.T
c3 = c1[::-1]
check_single(c1)
check_tuple(c1, c2, c3)
# 3d
d1 = np.arange(24).reshape((2, 3, 4))
d2 = d1.T
d3 = d1[::-1]
check_single(d1)
check_tuple(d1, d2, d3)
# 4d
e = np.arange(16).reshape((2, 2, 2, 2))
check_single(e)
# mixed dimensions
check_tuple(a1, b2, c3, d2)
def test_atleast_1d(self):
pyfunc = atleast_1d
cfunc = jit(nopython=True)(pyfunc)
self.check_atleast_nd(pyfunc, cfunc)
def test_atleast_2d(self):
pyfunc = atleast_2d
cfunc = jit(nopython=True)(pyfunc)
self.check_atleast_nd(pyfunc, cfunc)
def test_atleast_3d(self):
pyfunc = atleast_3d
cfunc = jit(nopython=True)(pyfunc)
self.check_atleast_nd(pyfunc, cfunc)
def check_as_strided(self, pyfunc):
cfunc = njit(pyfunc)
def check(arr):
expected = pyfunc(arr)
got = cfunc(arr)
self.assertPreciseEqual(got, expected)
arr = np.arange(24)
check(arr)
check(arr.reshape((6, 4)))
check(arr.reshape((4, 1, 6)))
def test_as_strided(self):
self.check_as_strided(as_strided1)
self.check_as_strided(as_strided2)
def test_sliding_window_view(self):
def check(arr, window_shape, axis):
# Our version is always writeable (NumPy default is False).
expected = np.lib.stride_tricks.sliding_window_view(
arr, window_shape, axis, writeable=True
)
got = sliding_window_view(arr, window_shape, axis)
self.assertPreciseEqual(got, expected)
# 1d array, different ways of specifying the axis.
arr1 = np.arange(24)
for axis in [None, 0, -1, (0,)]:
with self.subTest(f"1d array, axis={axis}"):
check(arr1, 5, axis)
# 2d array, 1d window.
arr2 = np.arange(200).reshape(10, 20)
for axis in [0, -1]:
with self.subTest(f"2d array, axis={axis}"):
check(arr2, 5, axis)
# 2d array, 2d window.
for axis in [None, (0, 1), (1, 0), (1, -2)]:
with self.subTest(f"2d array, axis={axis}"):
check(arr2, (5, 8), axis)
# 4d array, 2d window.
arr4 = np.arange(200).reshape(4, 5, 5, 2)
for axis in [(1, 2), (-2, -3)]:
with self.subTest(f"4d array, axis={axis}"):
check(arr4, (3, 2), axis)
# Repeated axis.
with self.subTest("2d array, repeated axes"):
check(arr2, (5, 3, 3), (0, 1, 0))
def test_sliding_window_view_errors(self):
def _raises(msg, *args):
with self.assertRaises(ValueError) as raises:
sliding_window_view(*args)
self.assertIn(msg, str(raises.exception))
def _typing_error(msg, *args):
with self.assertRaises(errors.TypingError) as raises:
sliding_window_view(*args)
self.assertIn(msg, str(raises.exception))
# Exceptions leak references
self.disable_leak_check()
arr1 = np.arange(24)
arr2 = np.arange(200).reshape(10, 20)
# Window shape cannot be larger than dimension or negative.
with self.subTest("1d window shape too large"):
_raises("window_shape cannot be larger", arr1, 25, None)
with self.subTest("2d window shape too large"):
_raises("window_shape cannot be larger", arr2, (4, 21), None)
with self.subTest("1d window negative size"):
_raises("`window_shape` cannot contain negative", arr1, -1, None)
with self.subTest("2d window with a negative size"):
_raises("`window_shape` cannot contain negative", arr2, (4, -3), None)
# window_shape and axis parameters must be compatible.
with self.subTest("1d array, 2d window shape"):
_raises("matching length window_shape and axis", arr1, (10, 2), None)
with self.subTest("2d window shape, only one axis given"):
_raises("matching length window_shape and axis", arr2, (10, 2), 1)
with self.subTest("1d window shape, 2 axes given"):
_raises("matching length window_shape and axis", arr1, 5, (0, 0))
# Axis values out of bounds.
with self.subTest("1d array, second axis"):
_raises("Argument axis out of bounds", arr1, 4, 1)
with self.subTest("1d array, axis -2"):
_raises("Argument axis out of bounds", arr1, 4, -2)
with self.subTest("2d array, fourth axis"):
_raises("Argument axis out of bounds", arr2, (4, 4), (0, 3))
with self.subTest("2d array, axis -3"):
_raises("Argument axis out of bounds", arr2, (4, 4), (0, -3))
# Useful messages for unsupported types.
with self.subTest("window_shape=None"):
_typing_error(
"window_shape must be an integer or tuple of integer", arr1, None
)
with self.subTest("window_shape=float"):
_typing_error(
"window_shape must be an integer or tuple of integer", arr1, 3.1
)
with self.subTest("window_shape=tuple(float)"):
_typing_error(
"window_shape must be an integer or tuple of integer", arr1, (3.1,)
)
with self.subTest("axis=float"):
_typing_error(
"axis must be None, an integer or tuple of integer", arr1, 4, 3.1
)
with self.subTest("axis=tuple(float)"):
_typing_error(
"axis must be None, an integer or tuple of integer", arr1, 4, (3.1,)
)
def test_flatten_array(self, flags=enable_pyobj_flags, layout='C'):
a = np.arange(9).reshape(3, 3)
if layout == 'F':
a = a.T
pyfunc = flatten_array
arraytype1 = typeof(a)
if layout == 'A':
# Force A layout
arraytype1 = arraytype1.copy(layout='A')
self.assertEqual(arraytype1.layout, layout)
cfunc = jit((arraytype1,), **flags)(pyfunc)
expected = pyfunc(a)
got = cfunc(a)
np.testing.assert_equal(expected, got)
def test_flatten_array_npm(self):
self.test_flatten_array(flags=no_pyobj_flags)
self.test_flatten_array(flags=no_pyobj_flags, layout='F')
self.test_flatten_array(flags=no_pyobj_flags, layout='A')
def test_ravel_array(self, flags=enable_pyobj_flags):
def generic_check(pyfunc, a, assume_layout):
# compile
arraytype1 = typeof(a)
self.assertEqual(arraytype1.layout, assume_layout)
cfunc = jit((arraytype1,), **flags)(pyfunc)
expected = pyfunc(a)
got = cfunc(a)
# Check result matches
np.testing.assert_equal(expected, got)
# Check copying behavior
py_copied = (a.ctypes.data != expected.ctypes.data)
nb_copied = (a.ctypes.data != got.ctypes.data)
self.assertEqual(py_copied, assume_layout != 'C')
self.assertEqual(py_copied, nb_copied)
check_method = partial(generic_check, ravel_array)
check_function = partial(generic_check, numpy_ravel_array)
def check(*args, **kwargs):
check_method(*args, **kwargs)
check_function(*args, **kwargs)
# Check 2D
check(np.arange(9).reshape(3, 3), assume_layout='C')
check(np.arange(9).reshape(3, 3, order='F'), assume_layout='F')
check(np.arange(18).reshape(3, 3, 2)[:, :, 0], assume_layout='A')
# Check 3D
check(np.arange(18).reshape(2, 3, 3), assume_layout='C')
check(np.arange(18).reshape(2, 3, 3, order='F'), assume_layout='F')
check(np.arange(36).reshape(2, 3, 3, 2)[:, :, :, 0], assume_layout='A')
def test_ravel_array_size(self, flags=enable_pyobj_flags):
a = np.arange(9).reshape(3, 3)
pyfunc = ravel_array_size
arraytype1 = typeof(a)
cfunc = jit((arraytype1,), **flags)(pyfunc)
expected = pyfunc(a)
got = cfunc(a)
np.testing.assert_equal(expected, got)
def test_ravel_array_npm(self):
self.test_ravel_array(flags=no_pyobj_flags)
def test_ravel_array_size_npm(self):
self.test_ravel_array_size(flags=no_pyobj_flags)
def test_transpose_array(self, flags=enable_pyobj_flags):
@from_generic([transpose_array, numpy_transpose_array])
def check(pyfunc):
a = np.arange(9).reshape(3, 3)
arraytype1 = typeof(a)
cfunc = jit((arraytype1,), **flags)(pyfunc)
expected = pyfunc(a)
got = cfunc(a)
np.testing.assert_equal(expected, got)
check()
def test_transpose_array_npm(self):
self.test_transpose_array(flags=no_pyobj_flags)
def test_squeeze_array(self, flags=enable_pyobj_flags):
a = np.arange(2 * 1 * 3 * 1 * 4).reshape(2, 1, 3, 1, 4)
pyfunc = squeeze_array
arraytype1 = typeof(a)
cfunc = jit((arraytype1,), **flags)(pyfunc)
expected = pyfunc(a)
got = cfunc(a)
np.testing.assert_equal(expected, got)
def test_squeeze_array_npm(self):
with self.assertRaises(errors.TypingError) as raises:
self.test_squeeze_array(flags=no_pyobj_flags)
self.assertIn("squeeze", str(raises.exception))
def test_add_axis(self):
@njit
def np_new_axis_getitem(a, idx):
return a[idx]
@njit
def np_new_axis_setitem(a, idx, item):
a[idx] = item
return a
a = np.arange(4 * 5 * 6 * 7).reshape((4, 5, 6, 7))
idx_cases = [
(slice(None), np.newaxis),
(np.newaxis, slice(None)),
(slice(1), np.newaxis, 1),
(np.newaxis, 2, slice(None)),
(slice(1), Ellipsis, np.newaxis, 1),
(1, np.newaxis, Ellipsis),
(np.newaxis, slice(1), np.newaxis, 1),
(1, Ellipsis, None, np.newaxis),
(np.newaxis, slice(1), Ellipsis, np.newaxis, 1),
(1, np.newaxis, np.newaxis, Ellipsis),
(np.newaxis, 1, np.newaxis, Ellipsis),
(slice(3), 1, np.newaxis, None),
(np.newaxis, 1, Ellipsis, None),
]
pyfunc_getitem = np_new_axis_getitem.py_func
cfunc_getitem = np_new_axis_getitem
pyfunc_setitem = np_new_axis_setitem.py_func
cfunc_setitem = np_new_axis_setitem
for idx in idx_cases:
expected = pyfunc_getitem(a, idx)
got = cfunc_getitem(a, idx)
np.testing.assert_equal(expected, got)
a_empty = np.zeros_like(a)
item = a[idx]
expected = pyfunc_setitem(a_empty.copy(), idx, item)
got = cfunc_setitem(a_empty.copy(), idx, item)
np.testing.assert_equal(expected, got)
def test_bad_index_npm(self):
with self.assertTypingError() as raises:
arraytype1 = from_dtype(np.dtype([('x', np.int32),
('y', np.int32)]))
arraytype2 = types.Array(types.int32, 2, 'C')
njit((arraytype1, arraytype2))(bad_index)
self.assertIn('Unsupported array index type', str(raises.exception))
def test_bad_float_index_npm(self):
with self.assertTypingError() as raises:
njit((types.Array(types.float64, 2, 'C'),))(bad_float_index)
self.assertIn('Unsupported array index type float64',
str(raises.exception))
def test_fill_diagonal_basic(self):
pyfunc = numpy_fill_diagonal
cfunc = jit(nopython=True)(pyfunc)
def _shape_variations(n):
# square
yield (n, n)
# tall and thin
yield (2 * n, n)
# short and fat
yield (n, 2 * n)
# a bit taller than wide; odd numbers of rows and cols
yield ((2 * n + 1), (2 * n - 1))
# 4d, all dimensions same
yield (n, n, n, n)
# weird edge case
yield (1, 1, 1)
def _val_variations():
yield 1
yield 3.142
yield np.nan
yield -np.inf
yield True
yield np.arange(4)
yield (4,)
yield [8, 9]
yield np.arange(54).reshape(9, 3, 2, 1) # contiguous C
yield np.asfortranarray(np.arange(9).reshape(3, 3)) # contiguous F
yield np.arange(9).reshape(3, 3)[::-1] # non-contiguous
# contiguous arrays
def _multi_dimensional_array_variations(n):
for shape in _shape_variations(n):
yield np.zeros(shape, dtype=np.float64)
yield np.asfortranarray(np.ones(shape, dtype=np.float64))
# non-contiguous arrays
def _multi_dimensional_array_variations_strided(n):
for shape in _shape_variations(n):
tmp = np.zeros(tuple([x * 2 for x in shape]), dtype=np.float64)
slicer = tuple(slice(0, x * 2, 2) for x in shape)
yield tmp[slicer]
def _check_fill_diagonal(arr, val):
for wrap in None, True, False:
a = arr.copy()
b = arr.copy()
if wrap is None:
params = {}
else:
params = {'wrap': wrap}
pyfunc(a, val, **params)
cfunc(b, val, **params)
self.assertPreciseEqual(a, b)
for arr in _multi_dimensional_array_variations(3):
for val in _val_variations():
_check_fill_diagonal(arr, val)
for arr in _multi_dimensional_array_variations_strided(3):
for val in _val_variations():
_check_fill_diagonal(arr, val)
# non-numeric input arrays
arr = np.array([True] * 9).reshape(3, 3)
_check_fill_diagonal(arr, False)
_check_fill_diagonal(arr, [False, True, False])
_check_fill_diagonal(arr, np.array([True, False, True]))
def test_fill_diagonal_exception_cases(self):
pyfunc = numpy_fill_diagonal
cfunc = jit(nopython=True)(pyfunc)
val = 1
# Exceptions leak references
self.disable_leak_check()
# first argument unsupported number of dimensions
for a in np.array([]), np.ones(5):
with self.assertRaises(TypingError) as raises:
cfunc(a, val)
assert "The first argument must be at least 2-D" in str(raises.exception)
# multi-dimensional input where dimensions are not all equal
with self.assertRaises(ValueError) as raises:
a = np.zeros((3, 3, 4))
cfunc(a, val)
self.assertEqual("All dimensions of input must be of equal length", str(raises.exception))
# cases where val has incompatible type / value
def _assert_raises(arr, val):
with self.assertRaises(ValueError) as raises:
cfunc(arr, val)
self.assertEqual("Unable to safely conform val to a.dtype", str(raises.exception))
arr = np.zeros((3, 3), dtype=np.int32)
val = np.nan
_assert_raises(arr, val)
val = [3.3, np.inf]
_assert_raises(arr, val)
val = np.array([1, 2, 1e10], dtype=np.int64)
_assert_raises(arr, val)
arr = np.zeros((3, 3), dtype=np.float32)
val = [1.4, 2.6, -1e100]
_assert_raises(arr, val)
val = 1.1e100
_assert_raises(arr, val)
val = np.array([-1e100])
_assert_raises(arr, val)
def test_broadcast_to(self):
pyfunc = numpy_broadcast_to
cfunc = jit(nopython=True)(pyfunc)
# Tests taken from
# https://github.com/numpy/numpy/blob/75f852edf94a7293e7982ad516bee314d7187c2d/numpy/lib/tests/test_stride_tricks.py#L234-L257 # noqa: E501
data = [
[np.array(0), (0,)],
[np.array(0), (1,)],
[np.array(0), (3,)],
[np.ones(1), (1,)],
[np.ones(1), (2,)],
[np.ones(1), (1, 2, 3)],
[np.arange(3), (3,)],
[np.arange(3), (1, 3)],
[np.arange(3), (2, 3)],
# test if shape is not a tuple
[np.ones(0), 0],
[np.ones(1), 1],
[np.ones(1), 2],
# these cases with size 0 are strange, but they reproduce the behavior
# of broadcasting with ufuncs
[np.ones(1), (0,)],
[np.ones((1, 2)), (0, 2)],
[np.ones((2, 1)), (2, 0)],
# numpy accepts scalar values as first argument to np.broadcast_to
[2, (2, 2)],
# tuple input
[(1, 2), (2, 2)],
]
for input_array, shape in data:
expected = pyfunc(input_array, shape)
got = cfunc(input_array, shape)
self.assertPreciseEqual(got, expected)
def test_broadcast_to_0d_array(self):
pyfunc = numpy_broadcast_to
cfunc = jit(nopython=True)(pyfunc)
inputs = [
np.array(123),
123,
True,
# can't do np.asarray() on the types below
# 'hello',
# np.timedelta64(10, 'Y'),
# np.datetime64(10, 'Y'),
]
shape = ()
for arr in inputs:
expected = pyfunc(arr, shape)
got = cfunc(arr, shape)
self.assertPreciseEqual(expected, got)
# ensure that np.broadcast_to returned a read-only array
self.assertFalse(got.flags['WRITEABLE'])
def test_broadcast_to_raises(self):
pyfunc = numpy_broadcast_to
cfunc = jit(nopython=True)(pyfunc)
# Tests taken from
# https://github.com/numpy/numpy/blob/75f852edf94a7293e7982ad516bee314d7187c2d/numpy/lib/tests/test_stride_tricks.py#L260-L276 # noqa: E501
data = [
[np.zeros((0,)), (), TypingError,
'Cannot broadcast a non-scalar to a scalar array'],
[np.zeros((1,)), (), TypingError,
'Cannot broadcast a non-scalar to a scalar array'],
[np.zeros((3,)), (), TypingError,
'Cannot broadcast a non-scalar to a scalar array'],
[(), (), TypingError,
'Cannot broadcast a non-scalar to a scalar array'],
[(123,), (), TypingError,
'Cannot broadcast a non-scalar to a scalar array'],
[np.zeros((3,)), (1,), ValueError,
'operands could not be broadcast together with remapped shapes'],
[np.zeros((3,)), (2,), ValueError,
'operands could not be broadcast together with remapped shapes'],
[np.zeros((3,)), (4,), ValueError,
'operands could not be broadcast together with remapped shapes'],
[np.zeros((1, 2)), (2, 1), ValueError,
'operands could not be broadcast together with remapped shapes'],
[np.zeros((1, 1)), (1,), ValueError,
'input operand has more dimensions than allowed by the axis remapping'],
[np.zeros((2, 2)), (3,), ValueError,
'input operand has more dimensions than allowed by the axis remapping'],
[np.zeros((1,)), -1, ValueError,
'all elements of broadcast shape must be non-negative'],
[np.zeros((1,)), (-1,), ValueError,
'all elements of broadcast shape must be non-negative'],
[np.zeros((1, 2)), (-1, 2), ValueError,
'all elements of broadcast shape must be non-negative'],
[np.zeros((1, 2)), (1.1, 2.2), TypingError,
'The second argument "shape" must be a tuple of integers'],
['hello', (3,), TypingError,
'The first argument "array" must be array-like'],
[3, (2, 'a'), TypingError,
'object cannot be interpreted as an integer'],
]
self.disable_leak_check()
for arr, target_shape, err, msg in data:
with self.assertRaises(err) as raises:
cfunc(arr, target_shape)
self.assertIn(msg, str(raises.exception))
def test_broadcast_to_corner_cases(self):
@njit
def _broadcast_to_1():
return np.broadcast_to('a', (2, 3))
expected = _broadcast_to_1.py_func()
got = _broadcast_to_1()
self.assertPreciseEqual(expected, got)
def test_broadcast_to_change_view(self):
pyfunc = numpy_broadcast_to
cfunc = jit(nopython=True)(pyfunc)
input_array = np.zeros(2, dtype=np.int32)
shape = (2, 2)
view = cfunc(input_array, shape)
input_array[0] = 10
self.assertEqual(input_array.sum(), 10)
self.assertEqual(view.sum(), 20)
def test_broadcast_to_indexing(self):
pyfunc = numpy_broadcast_to_indexing
cfunc = jit(nopython=True)(pyfunc)
data = [
[np.ones(2), (2, 2), (1,)],
]
for input_array, shape, idx in data:
expected = pyfunc(input_array, shape, idx)
got = cfunc(input_array, shape, idx)
self.assertPreciseEqual(got, expected)
def test_broadcast_to_array_attrs(self):
# See issue #8534. This tests that broadcast array attributes have the
# correct value when accessed.
@njit
def foo(arr):
ret = np.broadcast_to(arr, (2, 3))
return ret, ret.size, ret.shape, ret.strides
arr = np.arange(3)
expected = foo.py_func(arr)
got = foo(arr)
self.assertPreciseEqual(expected, got)
def test_broadcast_shapes(self):
pyfunc = numpy_broadcast_shapes
cfunc = jit(nopython=True)(pyfunc)
# Tests taken from
# https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/lib/tests/test_stride_tricks.py#L296-L334
data = [
# [[], ()], # cannot compute fingerprint of empty list
[()],
[(), ()],
[(7,)],
[(1, 2),],
[(1, 1)],
[(1, 1), (3, 4)],
[(6, 7), (5, 6, 1), (7,), (5, 1, 7)],
[(5, 6, 1)],
[(1, 3), (3, 1)],
[(1, 0), (0, 0)],
[(0, 1), (0, 0)],
[(1, 0), (0, 1)],
[(1, 1), (0, 0)],
[(1, 1), (1, 0)],
[(1, 1), (0, 1)],
[(), (0,)],
[(0,), (0, 0)],
[(0,), (0, 1)],
[(1,), (0, 0)],
[(), (0, 0)],
[(1, 1), (0,)],
[(1,), (0, 1)],
[(1,), (1, 0)],
[(), (1, 0)],
[(), (0, 1)],
[(1,), (3,)],
[2, (3, 2)],
]
for input_shape in data:
expected = pyfunc(*input_shape)
got = cfunc(*input_shape)
self.assertIsInstance(got, tuple)
self.assertPreciseEqual(expected, got)
def test_broadcast_shapes_raises(self):
pyfunc = numpy_broadcast_shapes
cfunc = jit(nopython=True)(pyfunc)
self.disable_leak_check()
# Tests taken from
# https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/lib/tests/test_stride_tricks.py#L337-L351
data = [
[(3,), (4,)],
[(2, 3), (2,)],
[(3,), (3,), (4,)],
[(1, 3, 4), (2, 3, 3)],
[(1, 2), (3, 1), (3, 2), (10, 5)],
[2, (2, 3)],
]
for input_shape in data:
with self.assertRaises(ValueError) as raises:
cfunc(*input_shape)
self.assertIn("shape mismatch: objects cannot be broadcast to a single shape",
str(raises.exception))
def test_broadcast_shapes_negative_dimension(self):
pyfunc = numpy_broadcast_shapes
cfunc = jit(nopython=True)(pyfunc)
self.disable_leak_check()
with self.assertRaises(ValueError) as raises:
cfunc((1, 2), (2), (-2))
self.assertIn("negative dimensions are not allowed", str(raises.exception))
def test_broadcast_shapes_invalid_type(self):
pyfunc = numpy_broadcast_shapes
cfunc = jit(nopython=True)(pyfunc)
self.disable_leak_check()
inps = [
((1, 2), ('hello',)),
(3.4,),
('string',),
((1.2, 'a')),
(1, ((1.2, 'a'))),
]
for inp in inps:
with self.assertRaises(TypingError) as raises:
cfunc(*inp)
self.assertIn("must be either an int or tuple[int]", str(raises.exception))
def test_shape(self):
pyfunc = numpy_shape
cfunc = jit(nopython=True)(pyfunc)
def check(x):
expected = pyfunc(x)
got = cfunc(x)
self.assertPreciseEqual(got, expected)
# check arrays
for t in [(), (1,), (2, 3,), (4, 5, 6)]:
arr = np.empty(t)
check(arr)
# check some types that go via asarray
for t in [1, False, [1,], [[1, 2,],[3, 4]], (1,), (1, 2, 3)]:
check(arr)
with self.assertRaises(TypingError) as raises:
cfunc('a')
self.assertIn("The argument to np.shape must be array-like",
str(raises.exception))
def test_flatnonzero_basic(self):
pyfunc = numpy_flatnonzero
cfunc = jit(nopython=True)(pyfunc)
def a_variations():
yield np.arange(-5, 5)
yield np.full(5, fill_value=0)
yield np.array([])
a = self.random.randn(100)
a[np.abs(a) > 0.2] = 0.0
yield a
yield a.reshape(5, 5, 4)
yield a.reshape(50, 2, order='F')
yield a.reshape(25, 4)[1::2]
yield a * 1j
for a in a_variations():
expected = pyfunc(a)
got = cfunc(a)
self.assertPreciseEqual(expected, got)
def test_argwhere_basic(self):
pyfunc = numpy_argwhere
cfunc = jit(nopython=True)(pyfunc)
def a_variations():
yield np.arange(-5, 5) > 2
yield np.full(5, fill_value=0)
yield np.full(5, fill_value=1)
yield np.array([])
yield np.array([-1.0, 0.0, 1.0])
a = self.random.randn(100)
yield a > 0.2
yield a.reshape(5, 5, 4) > 0.5
yield a.reshape(50, 2, order='F') > 0.5
yield a.reshape(25, 4)[1::2] > 0.5
yield a == a - 1
yield a > -a
for a in a_variations():
expected = pyfunc(a)
got = cfunc(a)
self.assertPreciseEqual(expected, got)
@staticmethod
def array_like_variations():
yield ((1.1, 2.2), (3.3, 4.4), (5.5, 6.6))
yield (0.0, 1.0, 0.0, -6.0)
yield ([0, 1], [2, 3])
yield ()
yield np.nan
yield 0
yield 1
yield False
yield True
yield (True, False, True)
yield 2 + 1j
# the following are not array-like, but NumPy does not raise
yield None
yield 'a_string'
yield ''
def test_flatnonzero_array_like(self):
pyfunc = numpy_flatnonzero
cfunc = jit(nopython=True)(pyfunc)
for a in self.array_like_variations():
expected = pyfunc(a)
got = cfunc(a)
self.assertPreciseEqual(expected, got)
def test_argwhere_array_like(self):
pyfunc = numpy_argwhere
cfunc = jit(nopython=True)(pyfunc)
for a in self.array_like_variations():
expected = pyfunc(a)
got = cfunc(a)
self.assertPreciseEqual(expected, got)
def broadcast_arrays_assert_correct_shape(self, input_shapes, expected_shape):
# Broadcast a list of arrays with the given input shapes and check the
# common output shape.
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
inarrays = [np.zeros(s) for s in input_shapes]
outarrays = cfunc(*inarrays)
expected = [expected_shape] * len(inarrays)
got = [a.shape for a in outarrays]
self.assertPreciseEqual(expected, got)
def test_broadcast_arrays_same_input_shapes(self):
# Tests taken from
# https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/lib/tests/test_stride_tricks.py#L83-L107 # noqa: E501
# Check that the final shape is just the input shape.
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
data = [
# (),
(1,),
(3,),
(0, 1),
(0, 3),
(1, 0),
(3, 0),
(1, 3),
(3, 1),
(3, 3),
]
for shape in data:
input_shapes = [shape]
# Single input.
self.broadcast_arrays_assert_correct_shape(input_shapes, shape)
# Double input.
input_shapes2 = [shape, shape]
self.broadcast_arrays_assert_correct_shape(input_shapes2, shape)
# Triple input.
input_shapes3 = [shape, shape, shape]
self.broadcast_arrays_assert_correct_shape(input_shapes3, shape)
def test_broadcast_arrays_two_compatible_by_ones_input_shapes(self):
# Tests taken from
# https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/lib/tests/test_stride_tricks.py#L110-L132
# Check that two different input shapes of the same length, but some have
# ones, broadcast to the correct shape.
data = [
[[(1,), (3,)], (3,)],
[[(1, 3), (3, 3)], (3, 3)],
[[(3, 1), (3, 3)], (3, 3)],
[[(1, 3), (3, 1)], (3, 3)],
[[(1, 1), (3, 3)], (3, 3)],
[[(1, 1), (1, 3)], (1, 3)],
[[(1, 1), (3, 1)], (3, 1)],
[[(1, 0), (0, 0)], (0, 0)],
[[(0, 1), (0, 0)], (0, 0)],
[[(1, 0), (0, 1)], (0, 0)],
[[(1, 1), (0, 0)], (0, 0)],
[[(1, 1), (1, 0)], (1, 0)],
[[(1, 1), (0, 1)], (0, 1)],
]
for input_shapes, expected_shape in data:
self.broadcast_arrays_assert_correct_shape(input_shapes, expected_shape)
# Reverse the input shapes since broadcasting should be symmetric.
self.broadcast_arrays_assert_correct_shape(input_shapes[::-1], expected_shape)
def test_broadcast_arrays_two_compatible_by_prepending_ones_input_shapes(self):
# Tests taken from
# https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/lib/tests/test_stride_tricks.py#L135-L164
# Check that two different input shapes (of different lengths) broadcast
# to the correct shape.
data = [
[[(), (3,)], (3,)],
[[(3,), (3, 3)], (3, 3)],
[[(3,), (3, 1)], (3, 3)],
[[(1,), (3, 3)], (3, 3)],
[[(), (3, 3)], (3, 3)],
[[(1, 1), (3,)], (1, 3)],
[[(1,), (3, 1)], (3, 1)],
[[(1,), (1, 3)], (1, 3)],
[[(), (1, 3)], (1, 3)],
[[(), (3, 1)], (3, 1)],
[[(), (0,)], (0,)],
[[(0,), (0, 0)], (0, 0)],
[[(0,), (0, 1)], (0, 0)],
[[(1,), (0, 0)], (0, 0)],
[[(), (0, 0)], (0, 0)],
[[(1, 1), (0,)], (1, 0)],
[[(1,), (0, 1)], (0, 1)],
[[(1,), (1, 0)], (1, 0)],
[[(), (1, 0)], (1, 0)],
[[(), (0, 1)], (0, 1)],
]
for input_shapes, expected_shape in data:
self.broadcast_arrays_assert_correct_shape(input_shapes, expected_shape)
# Reverse the input shapes since broadcasting should be symmetric.
self.broadcast_arrays_assert_correct_shape(input_shapes[::-1], expected_shape)
def test_broadcast_arrays_scalar_input(self):
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
data = [
[[True, False], (1,)],
[[1, 2], (1,)],
[[(1, 2), 2], (2,)],
]
for inarrays, expected_shape in data:
outarrays = cfunc(*inarrays)
got = [a.shape for a in outarrays]
expected = [expected_shape] * len(inarrays)
self.assertPreciseEqual(expected, got)
def test_broadcast_arrays_tuple_input(self):
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
outarrays = cfunc((123, 456), (789,))
expected = [(2,), (2,)]
got = [a.shape for a in outarrays]
self.assertPreciseEqual(expected, got)
def test_broadcast_arrays_non_array_input(self):
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
outarrays = cfunc(np.intp(2), np.zeros((1, 3), dtype=np.intp))
expected = [(1, 3), (1, 3)]
got = [a.shape for a in outarrays]
self.assertPreciseEqual(expected, got)
def test_broadcast_arrays_invalid_mixed_input_types(self):
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
self.disable_leak_check()
with self.assertRaises(TypingError) as raises:
arr = np.arange(6).reshape((2, 3))
b = True
cfunc(arr, b)
self.assertIn('Mismatch of argument types', str(raises.exception))
def test_broadcast_arrays_invalid_input(self):
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
self.disable_leak_check()
with self.assertRaises(TypingError) as raises:
arr = np.zeros(3, dtype=np.int64)
s = 'hello world'
cfunc(arr, s)
self.assertIn('Argument "1" must be array-like', str(raises.exception))
def test_broadcast_arrays_incompatible_shapes_raise_valueerror(self):
# Check that a ValueError is raised for incompatible shapes.
pyfunc = numpy_broadcast_arrays
cfunc = jit(nopython=True)(pyfunc)
self.disable_leak_check()
data = [
[(3,), (4,)],
[(2, 3), (2,)],
[(3,), (3,), (4,)],
[(1, 3, 4), (2, 3, 3)],
]
for input_shapes in data:
for shape in [input_shapes, input_shapes[::-1]]:
# Reverse the input shapes since broadcasting should be symmetric.
with self.assertRaises(ValueError) as raises:
inarrays = [np.zeros(s) for s in shape]
cfunc(*inarrays)
self.assertIn("shape mismatch: objects cannot be broadcast to a single shape",
str(raises.exception))
def test_readonly_after_flatten(self):
# Reproduces Issue #8370
def unfold_flatten(x, y):
r, c = x.shape
a = np.broadcast_to(x, (y, r, c))
b = np.swapaxes(a, 0, 1)
cc = b.flatten()
d = np.reshape(cc, (-1, c))
d[y - 1:, :] = d[: 1 - y]
return d
pyfunc = unfold_flatten
cfunc = jit(nopython=True)(pyfunc)
# If issue #8370 is not fixed: This will fail.
res_nb = cfunc(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), 2)
res_py = pyfunc(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), 2)
np.testing.assert_array_equal(res_py, res_nb)
def test_readonly_after_ravel(self):
# Reproduces another suggested problem in Issue #8370
def unfold_ravel(x, y):
r, c = x.shape
a = np.broadcast_to(x, (y, r, c))
b = np.swapaxes(a, 0, 1)
cc = b.ravel()
d = np.reshape(cc, (-1, c))
d[y - 1:, :] = d[: 1 - y]
return d
pyfunc = unfold_ravel
cfunc = jit(nopython=True)(pyfunc)
# If issue #8370 is not fixed: This will fail.
res_nb = cfunc(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), 2)
res_py = pyfunc(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), 2)
np.testing.assert_array_equal(res_py, res_nb)
def test_mutability_after_ravel(self):
# Reproduces another suggested problem in Issue #8370
# Namely that ravel should only return a writable array
# if a copy took place... otherwise leave it as it is.
self.disable_leak_check()
a_c = np.arange(9).reshape((3, 3)).copy()
a_f = a_c.copy(order='F')
a_c.flags.writeable = False
a_f.flags.writeable = False
def try_ravel_w_copy(a):
result = a.ravel()
return result
pyfunc = try_ravel_w_copy
cfunc = jit(nopython=True)(pyfunc)
ret_c = cfunc(a_c)
ret_f = cfunc(a_f)
msg = 'No copy was performed, so the ' \
'resulting array must not be writeable'
self.assertTrue(not ret_c.flags.writeable, msg)
msg = 'A copy was performed, yet the resulting array is not modifiable'
self.assertTrue(ret_f.flags.writeable, msg)
if __name__ == '__main__':
unittest.main()