ai-content-maker/.venv/Lib/site-packages/numba/tests/test_casting.py

138 lines
3.8 KiB
Python

import numpy as np
from numba.core.errors import TypingError
from numba import njit
from numba.core import types
import struct
import unittest
def float_to_int(x):
return types.int32(x)
def int_to_float(x):
return types.float64(x) / 2
def float_to_unsigned(x):
return types.uint32(x)
def float_to_complex(x):
return types.complex128(x)
def numpy_scalar_cast_error():
np.int32(np.zeros((4,)))
class TestCasting(unittest.TestCase):
def test_float_to_int(self):
pyfunc = float_to_int
cfunc = njit((types.float32,))(pyfunc)
self.assertEqual(cfunc.nopython_signatures[0].return_type, types.int32)
self.assertEqual(cfunc(12.3), pyfunc(12.3))
self.assertEqual(cfunc(12.3), int(12.3))
self.assertEqual(cfunc(-12.3), pyfunc(-12.3))
self.assertEqual(cfunc(-12.3), int(-12.3))
def test_int_to_float(self):
pyfunc = int_to_float
cfunc = njit((types.int64,))(pyfunc)
self.assertEqual(cfunc.nopython_signatures[0].return_type,
types.float64)
self.assertEqual(cfunc(321), pyfunc(321))
self.assertEqual(cfunc(321), 321. / 2)
def test_float_to_unsigned(self):
pyfunc = float_to_unsigned
cfunc = njit((types.float32,))(pyfunc)
self.assertEqual(cfunc.nopython_signatures[0].return_type, types.uint32)
self.assertEqual(cfunc(3.21), pyfunc(3.21))
self.assertEqual(cfunc(3.21), struct.unpack('I', struct.pack('i',
3))[0])
def test_float_to_complex(self):
pyfunc = float_to_complex
cfunc = njit((types.float64,))(pyfunc)
self.assertEqual(cfunc.nopython_signatures[0].return_type,
types.complex128)
self.assertEqual(cfunc(-3.21), pyfunc(-3.21))
self.assertEqual(cfunc(-3.21), -3.21 + 0j)
def test_array_to_array(self):
"""Make sure this compiles.
Cast C to A array
"""
@njit("f8(f8[:])")
def inner(x):
return x[0]
inner.disable_compile()
@njit("f8(f8[::1])")
def driver(x):
return inner(x)
x = np.array([1234], dtype=np.float64)
self.assertEqual(driver(x), x[0])
self.assertEqual(len(inner.overloads), 1)
def test_0darrayT_to_T(self):
@njit
def inner(x):
return x.dtype.type(x)
inputs = [
(np.bool_, True),
(np.float32, 12.3),
(np.float64, 12.3),
(np.int64, 12),
(np.complex64, 2j+3),
(np.complex128, 2j+3),
(np.timedelta64, np.timedelta64(3, 'h')),
(np.datetime64, np.datetime64('2016-01-01')),
('<U3', 'ABC'),
]
for (T, inp) in inputs:
x = np.array(inp, dtype=T)
self.assertEqual(inner(x), x[()])
def test_array_to_scalar(self):
"""
Ensure that a TypingError exception is raised if
user tries to convert numpy array to scalar
"""
with self.assertRaises(TypingError) as raises:
njit(())(numpy_scalar_cast_error)
self.assertIn("Casting array(float64, 1d, C) to int32 directly is unsupported.",
str(raises.exception))
def test_optional_to_optional(self):
"""
Test error due mishandling of Optional to Optional casting
Related issue: https://github.com/numba/numba/issues/1718
"""
# Attempt to cast optional(intp) to optional(float64)
opt_int = types.Optional(types.intp)
opt_flt = types.Optional(types.float64)
sig = opt_flt(opt_int)
@njit(sig)
def foo(a):
return a
self.assertEqual(foo(2), 2)
self.assertIsNone(foo(None))
if __name__ == '__main__':
unittest.main()