ai-content-maker/.venv/Lib/site-packages/numba/tests/test_fastmath.py

124 lines
4.5 KiB
Python

import math
import numpy as np
from numba.tests.support import captured_stdout, override_config
from numba import njit, vectorize, guvectorize
import unittest
class TestFastMath(unittest.TestCase):
def test_jit(self):
def foo(x):
return x + math.sin(x)
fastfoo = njit(fastmath=True)(foo)
slowfoo = njit(foo)
self.assertEqual(fastfoo(0.5), slowfoo(0.5))
fastllvm = fastfoo.inspect_llvm(fastfoo.signatures[0])
slowllvm = slowfoo.inspect_llvm(slowfoo.signatures[0])
# Ensure fast attribute in fast version only
self.assertIn('fadd fast', fastllvm)
self.assertIn('call fast', fastllvm)
self.assertNotIn('fadd fast', slowllvm)
self.assertNotIn('call fast', slowllvm)
def test_jit_subset_behaviour(self):
def foo(x, y):
return (x - y) + y
fastfoo = njit(fastmath={'reassoc', 'nsz'})(foo)
slowfoo = njit(fastmath={'reassoc'})(foo)
self.assertEqual(fastfoo(0.5, np.inf), 0.5)
self.assertTrue(np.isnan(slowfoo(0.5, np.inf)))
def test_jit_subset_code(self):
def foo(x):
return x + math.sin(x)
fastfoo = njit(fastmath={'reassoc', 'nsz'})(foo)
slowfoo = njit()(foo)
self.assertEqual(fastfoo(0.5), slowfoo(0.5))
fastllvm = fastfoo.inspect_llvm(fastfoo.signatures[0])
slowllvm = slowfoo.inspect_llvm(slowfoo.signatures[0])
# Ensure fast attributes in fast version only
self.assertNotIn('fadd fast', slowllvm)
self.assertNotIn('call fast', slowllvm)
self.assertNotIn('fadd reassoc nsz', slowllvm)
self.assertNotIn('call reassoc nsz', slowllvm)
self.assertNotIn('fadd nsz reassoc', slowllvm)
self.assertNotIn('call nsz reassoc', slowllvm)
self.assertTrue(
('fadd nsz reassoc' in fastllvm) or
('fadd reassoc nsz' in fastllvm),
fastllvm
)
self.assertTrue(
('call nsz reassoc' in fastllvm) or
('call reassoc nsz' in fastllvm),
fastllvm
)
def test_jit_subset_errors(self):
with self.assertRaises(ValueError) as raises:
njit(fastmath={'spqr'})(lambda x: x + 1)(1)
self.assertIn(
"Unrecognized fastmath flags:",
str(raises.exception),
)
with self.assertRaises(ValueError) as raises:
njit(fastmath={'spqr': False})(lambda x: x + 1)(1)
self.assertIn(
'Unrecognized fastmath flags:',
str(raises.exception),
)
with self.assertRaises(ValueError) as raises:
njit(fastmath=1337)(lambda x: x + 1)(1)
self.assertIn(
'Expected fastmath option(s) to be',
str(raises.exception),
)
def test_vectorize(self):
def foo(x):
return x + math.sin(x)
fastfoo = vectorize(fastmath=True)(foo)
slowfoo = vectorize(foo)
x = np.random.random(8).astype(np.float32)
# capture the optimized llvm to check for fast flag
with override_config('DUMP_OPTIMIZED', True):
with captured_stdout() as slow_cap:
expect = slowfoo(x)
slowllvm = slow_cap.getvalue()
with captured_stdout() as fast_cap:
got = fastfoo(x)
fastllvm = fast_cap.getvalue()
np.testing.assert_almost_equal(expect, got)
self.assertIn('fadd fast', fastllvm)
self.assertIn('call fast', fastllvm)
self.assertNotIn('fadd fast', slowllvm)
self.assertNotIn('call fast', slowllvm)
def test_guvectorize(self):
def foo(x, out):
out[0] = x + math.sin(x)
x = np.random.random(8).astype(np.float32)
with override_config('DUMP_OPTIMIZED', True):
types = ['(float32, float32[:])']
sig = '()->()'
with captured_stdout() as fast_cap:
fastfoo = guvectorize(types, sig, fastmath=True)(foo)
fastllvm = fast_cap.getvalue()
with captured_stdout() as slow_cap:
slowfoo = guvectorize(types, sig)(foo)
slowllvm = slow_cap.getvalue()
expect = slowfoo(x)
got = fastfoo(x)
np.testing.assert_almost_equal(expect, got)
self.assertIn('fadd fast', fastllvm)
self.assertIn('call fast', fastllvm)
self.assertNotIn('fadd fast', slowllvm)
self.assertNotIn('call fast', slowllvm)
if __name__ == '__main__':
unittest.main()