347 lines
10 KiB
Python
347 lines
10 KiB
Python
"""
|
|
Test NumPy Subclassing features
|
|
"""
|
|
|
|
import builtins
|
|
import unittest
|
|
from numbers import Number
|
|
from functools import wraps
|
|
|
|
import numpy as np
|
|
from llvmlite import ir
|
|
|
|
import numba
|
|
from numba import njit, typeof, objmode
|
|
from numba.core import cgutils, types, typing
|
|
from numba.core.pythonapi import box
|
|
from numba.core.errors import TypingError
|
|
from numba.core.registry import cpu_target
|
|
from numba.extending import (intrinsic, lower_builtin, overload_classmethod,
|
|
register_model, type_callable, typeof_impl,
|
|
register_jitable)
|
|
from numba.np import numpy_support
|
|
|
|
from numba.tests.support import TestCase, MemoryLeakMixin
|
|
|
|
# A quick util to allow logging within jit code
|
|
|
|
_logger = None
|
|
|
|
|
|
def _do_log(*args):
|
|
if _logger is not None:
|
|
_logger.append(args)
|
|
|
|
|
|
@register_jitable
|
|
def log(*args):
|
|
with objmode():
|
|
_do_log(*args)
|
|
|
|
|
|
def use_logger(fn):
|
|
@wraps(fn)
|
|
def core(*args, **kwargs):
|
|
global _logger
|
|
_logger = []
|
|
return fn(*args, **kwargs)
|
|
return core
|
|
|
|
|
|
class MyArray(np.ndarray):
|
|
# Tell Numba to not seamlessly treat this type as a regular ndarray.
|
|
__numba_array_subtype_dispatch__ = True
|
|
|
|
# __array__ is not needed given that this is a ndarray subclass
|
|
#
|
|
# def __array__(self, dtype=None):
|
|
# return self
|
|
|
|
# Interoperate with NumPy outside of Numba.
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
|
if method == "__call__":
|
|
N = None
|
|
scalars = []
|
|
for inp in inputs:
|
|
if isinstance(inp, Number):
|
|
scalars.append(inp)
|
|
elif isinstance(inp, (type(self), np.ndarray)):
|
|
if isinstance(inp, type(self)):
|
|
scalars.append(np.ndarray(inp.shape, inp.dtype, inp))
|
|
else:
|
|
scalars.append(inp)
|
|
if N is not None:
|
|
if N != inp.shape:
|
|
raise TypeError("inconsistent sizes")
|
|
else:
|
|
N = inp.shape
|
|
else:
|
|
return NotImplemented
|
|
ret = ufunc(*scalars, **kwargs)
|
|
return self.__class__(ret.shape, ret.dtype, ret)
|
|
else:
|
|
return NotImplemented
|
|
|
|
|
|
class MyArrayType(types.Array):
|
|
def __init__(self, dtype, ndim, layout, readonly=False, aligned=True):
|
|
name = f"MyArray({ndim}, {dtype}, {layout})"
|
|
super().__init__(dtype, ndim, layout, readonly=readonly,
|
|
aligned=aligned, name=name)
|
|
|
|
def copy(self, *args, **kwargs):
|
|
# This is here to future-proof.
|
|
# The test here never uses this.
|
|
raise NotImplementedError
|
|
|
|
# Tell Numba typing how to combine MyArrayType with other ndarray types.
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
|
if method == "__call__":
|
|
for inp in inputs:
|
|
if not isinstance(inp, (types.Array, types.Number)):
|
|
return NotImplemented
|
|
# Ban if all arguments are MyArrayType
|
|
if all(isinstance(inp, MyArrayType) for inp in inputs):
|
|
return NotImplemented
|
|
return MyArrayType
|
|
else:
|
|
return NotImplemented
|
|
|
|
@property
|
|
def box_type(self):
|
|
return MyArray
|
|
|
|
|
|
@typeof_impl.register(MyArray)
|
|
def typeof_ta_ndarray(val, c):
|
|
try:
|
|
dtype = numpy_support.from_dtype(val.dtype)
|
|
except NotImplementedError:
|
|
raise ValueError("Unsupported array dtype: %s" % (val.dtype,))
|
|
layout = numpy_support.map_layout(val)
|
|
readonly = not val.flags.writeable
|
|
return MyArrayType(dtype, val.ndim, layout, readonly=readonly)
|
|
|
|
|
|
@register_model(MyArrayType)
|
|
class MyArrayTypeModel(numba.core.datamodel.models.StructModel):
|
|
def __init__(self, dmm, fe_type):
|
|
ndim = fe_type.ndim
|
|
members = [
|
|
('meminfo', types.MemInfoPointer(fe_type.dtype)),
|
|
('parent', types.pyobject),
|
|
('nitems', types.intp),
|
|
('itemsize', types.intp),
|
|
('data', types.CPointer(fe_type.dtype)),
|
|
('shape', types.UniTuple(types.intp, ndim)),
|
|
('strides', types.UniTuple(types.intp, ndim)),
|
|
('extra_field', types.intp),
|
|
]
|
|
super(MyArrayTypeModel, self).__init__(dmm, fe_type, members)
|
|
|
|
|
|
@type_callable(MyArray)
|
|
def type_myarray(context):
|
|
def typer(shape, dtype, buf):
|
|
out = MyArrayType(
|
|
dtype=buf.dtype, ndim=len(shape), layout=buf.layout
|
|
)
|
|
return out
|
|
|
|
return typer
|
|
|
|
|
|
@lower_builtin(MyArray, types.UniTuple, types.DType, types.Array)
|
|
def impl_myarray(context, builder, sig, args):
|
|
from numba.np.arrayobj import make_array, populate_array
|
|
|
|
srcaryty = sig.args[-1]
|
|
shape, dtype, buf = args
|
|
|
|
srcary = make_array(srcaryty)(context, builder, value=buf)
|
|
# Copy source array and remove the parent field to avoid boxer re-using
|
|
# the original ndarray instance.
|
|
retary = make_array(sig.return_type)(context, builder)
|
|
populate_array(retary,
|
|
data=srcary.data,
|
|
shape=srcary.shape,
|
|
strides=srcary.strides,
|
|
itemsize=srcary.itemsize,
|
|
meminfo=srcary.meminfo)
|
|
|
|
ret = retary._getvalue()
|
|
context.nrt.incref(builder, sig.return_type, ret)
|
|
return ret
|
|
|
|
|
|
@box(MyArrayType)
|
|
def box_array(typ, val, c):
|
|
assert c.context.enable_nrt
|
|
np_dtype = numpy_support.as_dtype(typ.dtype)
|
|
dtypeptr = c.env_manager.read_const(c.env_manager.add_const(np_dtype))
|
|
newary = c.pyapi.nrt_adapt_ndarray_to_python(typ, val, dtypeptr)
|
|
# Steals NRT ref
|
|
c.context.nrt.decref(c.builder, typ, val)
|
|
return newary
|
|
|
|
|
|
@overload_classmethod(MyArrayType, "_allocate")
|
|
def _ol_array_allocate(cls, allocsize, align):
|
|
"""Implements a Numba-only classmethod on the array type.
|
|
"""
|
|
def impl(cls, allocsize, align):
|
|
log("LOG _ol_array_allocate", allocsize, align)
|
|
return allocator_MyArray(allocsize, align)
|
|
|
|
return impl
|
|
|
|
|
|
@intrinsic
|
|
def allocator_MyArray(typingctx, allocsize, align):
|
|
def impl(context, builder, sig, args):
|
|
context.nrt._require_nrt()
|
|
size, align = args
|
|
|
|
mod = builder.module
|
|
u32 = ir.IntType(32)
|
|
voidptr = cgutils.voidptr_t
|
|
|
|
get_alloc_fnty = ir.FunctionType(voidptr, ())
|
|
get_alloc_fn = cgutils.get_or_insert_function(
|
|
mod, get_alloc_fnty, name="_nrt_get_sample_external_allocator"
|
|
)
|
|
ext_alloc = builder.call(get_alloc_fn, ())
|
|
|
|
fnty = ir.FunctionType(voidptr, [cgutils.intp_t, u32, voidptr])
|
|
fn = cgutils.get_or_insert_function(
|
|
mod, fnty, name="NRT_MemInfo_alloc_safe_aligned_external"
|
|
)
|
|
fn.return_value.add_attribute("noalias")
|
|
if isinstance(align, builtins.int):
|
|
align = context.get_constant(types.uint32, align)
|
|
else:
|
|
assert align.type == u32, "align must be a uint32"
|
|
call = builder.call(fn, [size, align, ext_alloc])
|
|
call.name = "allocate_MyArray"
|
|
return call
|
|
|
|
mip = types.MemInfoPointer(types.voidptr) # return untyped pointer
|
|
sig = typing.signature(mip, allocsize, align)
|
|
return sig, impl
|
|
|
|
|
|
class TestNdarraySubclasses(MemoryLeakMixin, TestCase):
|
|
|
|
def test_myarray_return(self):
|
|
"""This tests the path to `MyArrayType.box_type`
|
|
"""
|
|
@njit
|
|
def foo(a):
|
|
return a + 1
|
|
|
|
buf = np.arange(4)
|
|
a = MyArray(buf.shape, buf.dtype, buf)
|
|
expected = foo.py_func(a)
|
|
got = foo(a)
|
|
self.assertIsInstance(got, MyArray)
|
|
self.assertIs(type(expected), type(got))
|
|
self.assertPreciseEqual(expected, got)
|
|
|
|
def test_myarray_passthru(self):
|
|
@njit
|
|
def foo(a):
|
|
return a
|
|
|
|
buf = np.arange(4)
|
|
a = MyArray(buf.shape, buf.dtype, buf)
|
|
expected = foo.py_func(a)
|
|
got = foo(a)
|
|
self.assertIsInstance(got, MyArray)
|
|
self.assertIs(type(expected), type(got))
|
|
self.assertPreciseEqual(expected, got)
|
|
|
|
def test_myarray_convert(self):
|
|
@njit
|
|
def foo(buf):
|
|
return MyArray(buf.shape, buf.dtype, buf)
|
|
|
|
buf = np.arange(4)
|
|
expected = foo.py_func(buf)
|
|
got = foo(buf)
|
|
self.assertIsInstance(got, MyArray)
|
|
self.assertIs(type(expected), type(got))
|
|
self.assertPreciseEqual(expected, got)
|
|
|
|
def test_myarray_asarray_non_jit(self):
|
|
def foo(buf):
|
|
converted = MyArray(buf.shape, buf.dtype, buf)
|
|
return np.asarray(converted) + buf
|
|
|
|
buf = np.arange(4)
|
|
got = foo(buf)
|
|
self.assertIs(type(got), np.ndarray)
|
|
self.assertPreciseEqual(got, buf + buf)
|
|
|
|
@unittest.expectedFailure
|
|
def test_myarray_asarray(self):
|
|
self.disable_leak_check()
|
|
|
|
@njit
|
|
def foo(buf):
|
|
converted = MyArray(buf.shape, buf.dtype, buf)
|
|
return np.asarray(converted)
|
|
|
|
buf = np.arange(4)
|
|
got = foo(buf)
|
|
# the following fails because our np.asarray is returning the source
|
|
# array type
|
|
self.assertIs(type(got), np.ndarray)
|
|
|
|
def test_myarray_ufunc_unsupported(self):
|
|
@njit
|
|
def foo(buf):
|
|
converted = MyArray(buf.shape, buf.dtype, buf)
|
|
return converted + converted
|
|
|
|
buf = np.arange(4, dtype=np.float32)
|
|
with self.assertRaises(TypingError) as raises:
|
|
foo(buf)
|
|
|
|
msg = ("No implementation of function",
|
|
"add(MyArray(1, float32, C), MyArray(1, float32, C))")
|
|
for m in msg:
|
|
self.assertIn(m, str(raises.exception))
|
|
|
|
@use_logger
|
|
def test_myarray_allocator_override(self):
|
|
"""
|
|
Checks that our custom allocator is used
|
|
"""
|
|
@njit
|
|
def foo(a):
|
|
b = a + np.arange(a.size, dtype=np.float64)
|
|
c = a + 1j
|
|
return b, c
|
|
|
|
buf = np.arange(4, dtype=np.float64)
|
|
a = MyArray(buf.shape, buf.dtype, buf)
|
|
|
|
expected = foo.py_func(a)
|
|
got = foo(a)
|
|
|
|
self.assertPreciseEqual(got, expected)
|
|
|
|
logged_lines = _logger
|
|
|
|
targetctx = cpu_target.target_context
|
|
nb_dtype = typeof(buf.dtype)
|
|
align = targetctx.get_preferred_array_alignment(nb_dtype)
|
|
self.assertEqual(logged_lines, [
|
|
("LOG _ol_array_allocate", expected[0].nbytes, align),
|
|
("LOG _ol_array_allocate", expected[1].nbytes, align),
|
|
])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|