ai-content-maker/.venv/Lib/site-packages/numba/tests/test_ndarray_subclasses.py

347 lines
10 KiB
Python

"""
Test NumPy Subclassing features
"""
import builtins
import unittest
from numbers import Number
from functools import wraps
import numpy as np
from llvmlite import ir
import numba
from numba import njit, typeof, objmode
from numba.core import cgutils, types, typing
from numba.core.pythonapi import box
from numba.core.errors import TypingError
from numba.core.registry import cpu_target
from numba.extending import (intrinsic, lower_builtin, overload_classmethod,
register_model, type_callable, typeof_impl,
register_jitable)
from numba.np import numpy_support
from numba.tests.support import TestCase, MemoryLeakMixin
# A quick util to allow logging within jit code
_logger = None
def _do_log(*args):
if _logger is not None:
_logger.append(args)
@register_jitable
def log(*args):
with objmode():
_do_log(*args)
def use_logger(fn):
@wraps(fn)
def core(*args, **kwargs):
global _logger
_logger = []
return fn(*args, **kwargs)
return core
class MyArray(np.ndarray):
# Tell Numba to not seamlessly treat this type as a regular ndarray.
__numba_array_subtype_dispatch__ = True
# __array__ is not needed given that this is a ndarray subclass
#
# def __array__(self, dtype=None):
# return self
# Interoperate with NumPy outside of Numba.
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if method == "__call__":
N = None
scalars = []
for inp in inputs:
if isinstance(inp, Number):
scalars.append(inp)
elif isinstance(inp, (type(self), np.ndarray)):
if isinstance(inp, type(self)):
scalars.append(np.ndarray(inp.shape, inp.dtype, inp))
else:
scalars.append(inp)
if N is not None:
if N != inp.shape:
raise TypeError("inconsistent sizes")
else:
N = inp.shape
else:
return NotImplemented
ret = ufunc(*scalars, **kwargs)
return self.__class__(ret.shape, ret.dtype, ret)
else:
return NotImplemented
class MyArrayType(types.Array):
def __init__(self, dtype, ndim, layout, readonly=False, aligned=True):
name = f"MyArray({ndim}, {dtype}, {layout})"
super().__init__(dtype, ndim, layout, readonly=readonly,
aligned=aligned, name=name)
def copy(self, *args, **kwargs):
# This is here to future-proof.
# The test here never uses this.
raise NotImplementedError
# Tell Numba typing how to combine MyArrayType with other ndarray types.
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if method == "__call__":
for inp in inputs:
if not isinstance(inp, (types.Array, types.Number)):
return NotImplemented
# Ban if all arguments are MyArrayType
if all(isinstance(inp, MyArrayType) for inp in inputs):
return NotImplemented
return MyArrayType
else:
return NotImplemented
@property
def box_type(self):
return MyArray
@typeof_impl.register(MyArray)
def typeof_ta_ndarray(val, c):
try:
dtype = numpy_support.from_dtype(val.dtype)
except NotImplementedError:
raise ValueError("Unsupported array dtype: %s" % (val.dtype,))
layout = numpy_support.map_layout(val)
readonly = not val.flags.writeable
return MyArrayType(dtype, val.ndim, layout, readonly=readonly)
@register_model(MyArrayType)
class MyArrayTypeModel(numba.core.datamodel.models.StructModel):
def __init__(self, dmm, fe_type):
ndim = fe_type.ndim
members = [
('meminfo', types.MemInfoPointer(fe_type.dtype)),
('parent', types.pyobject),
('nitems', types.intp),
('itemsize', types.intp),
('data', types.CPointer(fe_type.dtype)),
('shape', types.UniTuple(types.intp, ndim)),
('strides', types.UniTuple(types.intp, ndim)),
('extra_field', types.intp),
]
super(MyArrayTypeModel, self).__init__(dmm, fe_type, members)
@type_callable(MyArray)
def type_myarray(context):
def typer(shape, dtype, buf):
out = MyArrayType(
dtype=buf.dtype, ndim=len(shape), layout=buf.layout
)
return out
return typer
@lower_builtin(MyArray, types.UniTuple, types.DType, types.Array)
def impl_myarray(context, builder, sig, args):
from numba.np.arrayobj import make_array, populate_array
srcaryty = sig.args[-1]
shape, dtype, buf = args
srcary = make_array(srcaryty)(context, builder, value=buf)
# Copy source array and remove the parent field to avoid boxer re-using
# the original ndarray instance.
retary = make_array(sig.return_type)(context, builder)
populate_array(retary,
data=srcary.data,
shape=srcary.shape,
strides=srcary.strides,
itemsize=srcary.itemsize,
meminfo=srcary.meminfo)
ret = retary._getvalue()
context.nrt.incref(builder, sig.return_type, ret)
return ret
@box(MyArrayType)
def box_array(typ, val, c):
assert c.context.enable_nrt
np_dtype = numpy_support.as_dtype(typ.dtype)
dtypeptr = c.env_manager.read_const(c.env_manager.add_const(np_dtype))
newary = c.pyapi.nrt_adapt_ndarray_to_python(typ, val, dtypeptr)
# Steals NRT ref
c.context.nrt.decref(c.builder, typ, val)
return newary
@overload_classmethod(MyArrayType, "_allocate")
def _ol_array_allocate(cls, allocsize, align):
"""Implements a Numba-only classmethod on the array type.
"""
def impl(cls, allocsize, align):
log("LOG _ol_array_allocate", allocsize, align)
return allocator_MyArray(allocsize, align)
return impl
@intrinsic
def allocator_MyArray(typingctx, allocsize, align):
def impl(context, builder, sig, args):
context.nrt._require_nrt()
size, align = args
mod = builder.module
u32 = ir.IntType(32)
voidptr = cgutils.voidptr_t
get_alloc_fnty = ir.FunctionType(voidptr, ())
get_alloc_fn = cgutils.get_or_insert_function(
mod, get_alloc_fnty, name="_nrt_get_sample_external_allocator"
)
ext_alloc = builder.call(get_alloc_fn, ())
fnty = ir.FunctionType(voidptr, [cgutils.intp_t, u32, voidptr])
fn = cgutils.get_or_insert_function(
mod, fnty, name="NRT_MemInfo_alloc_safe_aligned_external"
)
fn.return_value.add_attribute("noalias")
if isinstance(align, builtins.int):
align = context.get_constant(types.uint32, align)
else:
assert align.type == u32, "align must be a uint32"
call = builder.call(fn, [size, align, ext_alloc])
call.name = "allocate_MyArray"
return call
mip = types.MemInfoPointer(types.voidptr) # return untyped pointer
sig = typing.signature(mip, allocsize, align)
return sig, impl
class TestNdarraySubclasses(MemoryLeakMixin, TestCase):
def test_myarray_return(self):
"""This tests the path to `MyArrayType.box_type`
"""
@njit
def foo(a):
return a + 1
buf = np.arange(4)
a = MyArray(buf.shape, buf.dtype, buf)
expected = foo.py_func(a)
got = foo(a)
self.assertIsInstance(got, MyArray)
self.assertIs(type(expected), type(got))
self.assertPreciseEqual(expected, got)
def test_myarray_passthru(self):
@njit
def foo(a):
return a
buf = np.arange(4)
a = MyArray(buf.shape, buf.dtype, buf)
expected = foo.py_func(a)
got = foo(a)
self.assertIsInstance(got, MyArray)
self.assertIs(type(expected), type(got))
self.assertPreciseEqual(expected, got)
def test_myarray_convert(self):
@njit
def foo(buf):
return MyArray(buf.shape, buf.dtype, buf)
buf = np.arange(4)
expected = foo.py_func(buf)
got = foo(buf)
self.assertIsInstance(got, MyArray)
self.assertIs(type(expected), type(got))
self.assertPreciseEqual(expected, got)
def test_myarray_asarray_non_jit(self):
def foo(buf):
converted = MyArray(buf.shape, buf.dtype, buf)
return np.asarray(converted) + buf
buf = np.arange(4)
got = foo(buf)
self.assertIs(type(got), np.ndarray)
self.assertPreciseEqual(got, buf + buf)
@unittest.expectedFailure
def test_myarray_asarray(self):
self.disable_leak_check()
@njit
def foo(buf):
converted = MyArray(buf.shape, buf.dtype, buf)
return np.asarray(converted)
buf = np.arange(4)
got = foo(buf)
# the following fails because our np.asarray is returning the source
# array type
self.assertIs(type(got), np.ndarray)
def test_myarray_ufunc_unsupported(self):
@njit
def foo(buf):
converted = MyArray(buf.shape, buf.dtype, buf)
return converted + converted
buf = np.arange(4, dtype=np.float32)
with self.assertRaises(TypingError) as raises:
foo(buf)
msg = ("No implementation of function",
"add(MyArray(1, float32, C), MyArray(1, float32, C))")
for m in msg:
self.assertIn(m, str(raises.exception))
@use_logger
def test_myarray_allocator_override(self):
"""
Checks that our custom allocator is used
"""
@njit
def foo(a):
b = a + np.arange(a.size, dtype=np.float64)
c = a + 1j
return b, c
buf = np.arange(4, dtype=np.float64)
a = MyArray(buf.shape, buf.dtype, buf)
expected = foo.py_func(a)
got = foo(a)
self.assertPreciseEqual(got, expected)
logged_lines = _logger
targetctx = cpu_target.target_context
nb_dtype = typeof(buf.dtype)
align = targetctx.get_preferred_array_alignment(nb_dtype)
self.assertEqual(logged_lines, [
("LOG _ol_array_allocate", expected[0].nbytes, align),
("LOG _ol_array_allocate", expected[1].nbytes, align),
])
if __name__ == "__main__":
unittest.main()