ai-content-maker/.venv/Lib/site-packages/numba/tests/test_numberctor.py

242 lines
7.0 KiB
Python

import numpy as np
from numba import jit, njit
from numba.core import types
from numba.tests.support import TestCase, tag
import unittest
def dobool(a):
return bool(a)
def doint(a):
return int(a)
def dofloat(a):
return float(a)
def docomplex(a):
return complex(a)
def docomplex2(a, b):
return complex(a, b)
def complex_calc(a):
z = complex(a)
return z.real ** 2 + z.imag ** 2
def complex_calc2(a, b):
z = complex(a, b)
return z.real ** 2 + z.imag ** 2
def converter(tp):
def f(a):
return tp(a)
return f
def real_np_types():
for tp_name in ('int8', 'int16', 'int32', 'int64',
'uint8', 'uint16', 'uint32', 'uint64',
'intc', 'uintc', 'intp', 'uintp',
'float32', 'float64', 'bool_'):
yield tp_name
def complex_np_types():
for tp_name in ('complex64', 'complex128'):
yield tp_name
class TestScalarNumberCtor(TestCase):
"""
Test <number class>(some scalar)
"""
def check_int_constructor(self, pyfunc):
x_types = [
types.boolean, types.int32, types.int64, types.float32, types.float64
]
x_values = [1, 0, 1000, 12.2, 23.4]
for ty, x in zip(x_types, x_values):
cfunc = njit((ty,))(pyfunc)
self.assertPreciseEqual(pyfunc(x), cfunc(x))
def test_bool(self):
self.check_int_constructor(dobool)
def test_int(self):
self.check_int_constructor(doint)
def test_float(self):
pyfunc = dofloat
x_types = [
types.int32, types.int64, types.float32, types.float64
]
x_values = [1, 1000, 12.2, 23.4]
for ty, x in zip(x_types, x_values):
cfunc = njit((ty,))(pyfunc)
self.assertPreciseEqual(pyfunc(x), cfunc(x),
prec='single' if ty is types.float32 else 'exact')
def test_complex(self):
pyfunc = docomplex
x_types = [
types.int32, types.int64, types.float32, types.float64,
types.complex64, types.complex128,
]
x_values = [1, 1000, 12.2, 23.4, 1.5-5j, 1-4.75j]
for ty, x in zip(x_types, x_values):
cfunc = njit((ty,))(pyfunc)
got = cfunc(x)
expected = pyfunc(x)
self.assertPreciseEqual(pyfunc(x), cfunc(x),
prec='single' if ty is types.float32 else 'exact')
# Check that complex(float32) really creates a complex64,
# by checking the accuracy of computations.
pyfunc = complex_calc
x = 1.0 + 2**-50
cfunc = njit((types.float32,))(pyfunc)
self.assertPreciseEqual(cfunc(x), 1.0)
# Control (complex128)
cfunc = njit((types.float64,))(pyfunc)
self.assertGreater(cfunc(x), 1.0)
def test_complex2(self):
pyfunc = docomplex2
x_types = [
types.int32, types.int64, types.float32, types.float64
]
x_values = [1, 1000, 12.2, 23.4]
y_values = [x - 3 for x in x_values]
for ty, x, y in zip(x_types, x_values, y_values):
cfunc = njit((ty, ty))(pyfunc)
self.assertPreciseEqual(pyfunc(x, y), cfunc(x, y),
prec='single' if ty is types.float32 else 'exact')
# Check that complex(float32, float32) really creates a complex64,
# by checking the accuracy of computations.
pyfunc = complex_calc2
x = 1.0 + 2**-50
cfunc = njit((types.float32, types.float32))(pyfunc)
self.assertPreciseEqual(cfunc(x, x), 2.0)
# Control (complex128)
cfunc = njit((types.float64, types.float32))(pyfunc)
self.assertGreater(cfunc(x, x), 2.0)
def check_type_converter(self, tp, np_type, values):
pyfunc = converter(tp)
cfunc = jit(nopython=True)(pyfunc)
if issubclass(np_type, np.integer):
# Converting from a Python int to a small Numpy int on 32-bit
# builds can raise "OverflowError: Python int too large to
# convert to C long". Work around by going through a large
# Numpy int first.
np_converter = lambda x: np_type(np.int64(x))
else:
np_converter = np_type
dtype = np.dtype(np_type)
for val in values:
if dtype.kind == 'u' and isinstance(val, float) and val < 0.0:
# Converting negative float to unsigned int yields undefined
# behaviour (and concretely different on ARM vs. x86)
continue
expected = np_converter(val)
got = cfunc(val)
self.assertPreciseEqual(got, expected,
msg="for type %s with arg %s" % (np_type, val))
def check_number_types(self, tp_factory):
values = [0, 1, -1, 100003, 10000000000007, -100003, -10000000000007,
1.5, -3.5]
for tp_name in real_np_types():
np_type = getattr(np, tp_name)
tp = tp_factory(tp_name)
self.check_type_converter(tp, np_type, values)
values.append(1.5+3j)
for tp_name in complex_np_types():
np_type = getattr(np, tp_name)
tp = tp_factory(tp_name)
self.check_type_converter(tp, np_type, values)
def test_numba_types(self):
"""
Test explicit casting to Numba number types.
"""
def tp_factory(tp_name):
return getattr(types, tp_name)
self.check_number_types(tp_factory)
def test_numpy_types(self):
"""
Test explicit casting to Numpy number types.
"""
def tp_factory(tp_name):
return getattr(np, tp_name)
self.check_number_types(tp_factory)
class TestArrayNumberCtor(TestCase):
"""
Test <number class>(some sequence)
"""
def check_type_constructor(self, np_type, values):
pyfunc = converter(np_type)
cfunc = jit(nopython=True)(pyfunc)
for val in values:
expected = np_type(val)
got = cfunc(val)
self.assertPreciseEqual(got, expected)
def test_1d(self):
values = [
(1.0, 2.5),
(1, 2.5),
[1.0, 2.5],
(),
]
for tp_name in real_np_types():
np_type = getattr(np, tp_name)
self.check_type_constructor(np_type, values)
values = [
(1j, 2.5),
[1.0, 2.5],
]
for tp_name in complex_np_types():
np_type = getattr(np, tp_name)
self.check_type_constructor(np_type, values)
def test_2d(self):
values = [
((1.0, 2.5), (3.5, 4)),
[(1.0, 2.5), (3.5, 4.0)],
([1.0, 2.5], [3.5, 4.0]),
[(), ()],
]
for tp_name in real_np_types():
np_type = getattr(np, tp_name)
self.check_type_constructor(np_type, values)
for tp_name in complex_np_types():
np_type = getattr(np, tp_name)
self.check_type_constructor(np_type, values)
if __name__ == '__main__':
unittest.main()