1921 lines
70 KiB
Python
1921 lines
70 KiB
Python
import collections
|
|
import functools
|
|
import math
|
|
import multiprocessing
|
|
import os
|
|
import random
|
|
import subprocess
|
|
import sys
|
|
import threading
|
|
import itertools
|
|
from textwrap import dedent
|
|
|
|
import numpy as np
|
|
|
|
import unittest
|
|
|
|
import numba
|
|
from numba import jit, _helperlib, njit
|
|
from numba.core import types
|
|
from numba.tests.support import TestCase, compile_function, tag
|
|
from numba.core.errors import TypingError
|
|
|
|
|
|
# State size of the Mersenne Twister
|
|
N = 624
|
|
|
|
|
|
def get_py_state_ptr():
|
|
return _helperlib.rnd_get_py_state_ptr()
|
|
|
|
def get_np_state_ptr():
|
|
return _helperlib.rnd_get_np_state_ptr()
|
|
|
|
|
|
def numpy_randint1(a):
|
|
return np.random.randint(a)
|
|
|
|
def numpy_randint2(a, b):
|
|
return np.random.randint(a, b)
|
|
|
|
def random_randint(a, b):
|
|
return random.randint(a, b)
|
|
|
|
def random_randrange1(a):
|
|
return random.randrange(a)
|
|
|
|
def random_randrange2(a, b):
|
|
return random.randrange(a, b)
|
|
|
|
def random_randrange3(a, b, c):
|
|
return random.randrange(a, b, c)
|
|
|
|
def numpy_choice1(a):
|
|
return np.random.choice(a)
|
|
|
|
def numpy_choice2(a, size):
|
|
return np.random.choice(a, size=size)
|
|
|
|
def numpy_choice3(a, size, replace):
|
|
return np.random.choice(a, size=size, replace=replace)
|
|
|
|
def numpy_multinomial2(n, pvals):
|
|
return np.random.multinomial(n, pvals)
|
|
|
|
def numpy_multinomial3(n, pvals, size):
|
|
return np.random.multinomial(n, pvals=pvals, size=size)
|
|
|
|
def numpy_dirichlet(alpha, size):
|
|
return np.random.dirichlet(alpha, size=size)
|
|
|
|
def numpy_dirichlet_default(alpha):
|
|
return np.random.dirichlet(alpha)
|
|
|
|
def numpy_noncentral_chisquare(df, nonc, size):
|
|
return np.random.noncentral_chisquare(df, nonc, size=size)
|
|
|
|
def numpy_noncentral_chisquare_default(df, nonc):
|
|
return np.random.noncentral_chisquare(df, nonc)
|
|
|
|
def numpy_check_rand(seed, a, b):
|
|
np.random.seed(seed)
|
|
expected = np.random.random((a, b))
|
|
np.random.seed(seed)
|
|
got = np.random.rand(a, b)
|
|
return expected, got
|
|
|
|
def numpy_check_randn(seed, a, b):
|
|
np.random.seed(seed)
|
|
expected = np.random.standard_normal((a, b))
|
|
np.random.seed(seed)
|
|
got = np.random.randn(a, b)
|
|
return expected, got
|
|
|
|
def jit_with_args(name, argstring):
|
|
code = """def func(%(argstring)s):
|
|
return %(name)s(%(argstring)s)
|
|
""" % locals()
|
|
pyfunc = compile_function("func", code, globals())
|
|
return jit(nopython=True)(pyfunc)
|
|
|
|
def jit_with_kwargs(name, kwarg_list):
|
|
# Similar to jit_with_args, but uses keyword arguments
|
|
call_args_with_kwargs = ','.join([f'{kw}={kw}' for kw in kwarg_list])
|
|
signature = ','.join(kwarg_list)
|
|
code = f"""def func({signature}):
|
|
return {name}({call_args_with_kwargs})
|
|
"""
|
|
pyfunc = compile_function("func", code, globals())
|
|
return jit(nopython=True)(pyfunc)
|
|
|
|
def jit_nullary(name):
|
|
return jit_with_args(name, "")
|
|
|
|
def jit_unary(name):
|
|
return jit_with_args(name, "a")
|
|
|
|
def jit_binary(name):
|
|
return jit_with_args(name, "a, b")
|
|
|
|
def jit_ternary(name):
|
|
return jit_with_args(name, "a, b, c")
|
|
|
|
|
|
random_gauss = jit_binary("random.gauss")
|
|
random_random = jit_nullary("random.random")
|
|
random_seed = jit_unary("random.seed")
|
|
|
|
numpy_normal = jit_binary("np.random.normal")
|
|
numpy_random = jit_nullary("np.random.random")
|
|
numpy_seed = jit_unary("np.random.seed")
|
|
|
|
|
|
def _copy_py_state(r, ptr):
|
|
"""
|
|
Copy state of Python random *r* to Numba state *ptr*.
|
|
"""
|
|
mt = r.getstate()[1]
|
|
ints, index = mt[:-1], mt[-1]
|
|
_helperlib.rnd_set_state(ptr, (index, list(ints)))
|
|
return ints, index
|
|
|
|
def _copy_np_state(r, ptr):
|
|
"""
|
|
Copy state of Numpy random *r* to Numba state *ptr*.
|
|
"""
|
|
ints, index = r.get_state()[1:3]
|
|
_helperlib.rnd_set_state(ptr, (index, [int(x) for x in ints]))
|
|
return ints, index
|
|
|
|
def sync_to_numpy(r):
|
|
_ver, mt_st, _gauss_next = r.getstate()
|
|
mt_pos = mt_st[-1]
|
|
mt_ints = mt_st[:-1]
|
|
assert len(mt_ints) == 624
|
|
|
|
np_st = ('MT19937', np.array(mt_ints, dtype='uint32'), mt_pos)
|
|
if _gauss_next is None:
|
|
np_st += (0, 0.0)
|
|
else:
|
|
np_st += (1, _gauss_next)
|
|
|
|
np.random.set_state(np_st)
|
|
|
|
# Pure Python equivalents of some of the Numpy distributions, using
|
|
# Python's basic generators.
|
|
|
|
def py_chisquare(r, df):
|
|
return 2.0 * r.gammavariate(df / 2.0, 1.0)
|
|
|
|
def py_f(r, num, denom):
|
|
return ((py_chisquare(r, num) * denom) /
|
|
(py_chisquare(r, denom) * num))
|
|
|
|
|
|
class BaseTest(TestCase):
|
|
|
|
def _follow_cpython(self, ptr, seed=2):
|
|
r = random.Random(seed)
|
|
_copy_py_state(r, ptr)
|
|
return r
|
|
|
|
def _follow_numpy(self, ptr, seed=2):
|
|
r = np.random.RandomState(seed)
|
|
_copy_np_state(r, ptr)
|
|
return r
|
|
|
|
|
|
class TestInternals(BaseTest):
|
|
"""
|
|
Test low-level internals of the implementation.
|
|
"""
|
|
|
|
def _check_get_set_state(self, ptr):
|
|
state = _helperlib.rnd_get_state(ptr)
|
|
i, ints = state
|
|
self.assertIsInstance(i, int)
|
|
self.assertIsInstance(ints, list)
|
|
self.assertEqual(len(ints), N)
|
|
j = (i * 100007) % N
|
|
ints = [i * 3 for i in range(N)]
|
|
# Roundtrip
|
|
_helperlib.rnd_set_state(ptr, (j, ints))
|
|
self.assertEqual(_helperlib.rnd_get_state(ptr), (j, ints))
|
|
|
|
def _check_shuffle(self, ptr):
|
|
# We test shuffling against CPython
|
|
r = random.Random()
|
|
ints, index = _copy_py_state(r, ptr)
|
|
# Force shuffling in CPython generator
|
|
for i in range(index, N + 1, 2):
|
|
r.random()
|
|
_helperlib.rnd_shuffle(ptr)
|
|
# Check new integer keys
|
|
mt = r.getstate()[1]
|
|
ints, index = mt[:-1], mt[-1]
|
|
self.assertEqual(_helperlib.rnd_get_state(ptr)[1], list(ints))
|
|
|
|
def _check_init(self, ptr):
|
|
# We use the same integer seeding as Numpy
|
|
# (CPython is different: it treats the integer as a byte array)
|
|
r = np.random.RandomState()
|
|
for i in [0, 1, 125, 2**32 - 5]:
|
|
# Need to cast to a C-sized int (for Numpy <= 1.7)
|
|
r.seed(np.uint32(i))
|
|
st = r.get_state()
|
|
ints = list(st[1])
|
|
index = st[2]
|
|
assert index == N # sanity check
|
|
_helperlib.rnd_seed(ptr, i)
|
|
self.assertEqual(_helperlib.rnd_get_state(ptr), (index, ints))
|
|
|
|
def _check_perturb(self, ptr):
|
|
states = []
|
|
for i in range(10):
|
|
# Initialize with known state
|
|
_helperlib.rnd_seed(ptr, 0)
|
|
# Perturb with entropy
|
|
_helperlib.rnd_seed(ptr, os.urandom(512))
|
|
states.append(tuple(_helperlib.rnd_get_state(ptr)[1]))
|
|
# No two identical states
|
|
self.assertEqual(len(set(states)), len(states))
|
|
|
|
def test_get_set_state(self):
|
|
self._check_get_set_state(get_py_state_ptr())
|
|
|
|
def test_shuffle(self):
|
|
self._check_shuffle(get_py_state_ptr())
|
|
|
|
def test_init(self):
|
|
self._check_init(get_py_state_ptr())
|
|
|
|
def test_perturb(self):
|
|
self._check_perturb(get_py_state_ptr())
|
|
|
|
|
|
class TestRandom(BaseTest):
|
|
|
|
# NOTE: there may be cascading imprecision issues (e.g. between x87-using
|
|
# C code and SSE-using LLVM code), which is especially brutal for some
|
|
# iterative algorithms with sensitive exit conditions.
|
|
# Therefore we stick to hardcoded integers for seed values.
|
|
|
|
def _check_random_seed(self, seedfunc, randomfunc):
|
|
"""
|
|
Check seed()- and random()-like functions.
|
|
"""
|
|
# Our seed() mimics NumPy's.
|
|
r = np.random.RandomState()
|
|
for i in [0, 1, 125, 2**32 - 1]:
|
|
# Need to cast to a C-sized int (for Numpy <= 1.7)
|
|
r.seed(np.uint32(i))
|
|
seedfunc(i)
|
|
# Be sure to trigger a reshuffle
|
|
for j in range(N + 10):
|
|
self.assertPreciseEqual(randomfunc(), r.uniform(0.0, 1.0))
|
|
|
|
def test_random_random(self):
|
|
self._check_random_seed(random_seed, random_random)
|
|
|
|
def test_numpy_random(self):
|
|
self._check_random_seed(numpy_seed, numpy_random)
|
|
# Test aliases
|
|
self._check_random_seed(numpy_seed, jit_nullary("np.random.random_sample"))
|
|
self._check_random_seed(numpy_seed, jit_nullary("np.random.ranf"))
|
|
self._check_random_seed(numpy_seed, jit_nullary("np.random.sample"))
|
|
self._check_random_seed(numpy_seed, jit_nullary("np.random.rand"))
|
|
|
|
def _check_random_sized(self, seedfunc, randomfunc):
|
|
# Our seed() mimics NumPy's.
|
|
r = np.random.RandomState()
|
|
for i in [0, 1, 125, 2**32 - 1]:
|
|
# Need to cast to a C-sized int (for Numpy <= 1.7)
|
|
r.seed(np.uint32(i))
|
|
seedfunc(i)
|
|
for n in range(10):
|
|
self.assertPreciseEqual(randomfunc(n), r.uniform(0.0, 1.0, n))
|
|
|
|
def test_numpy_random_sized(self):
|
|
self._check_random_sized(numpy_seed, jit_unary("np.random.random_sample"))
|
|
self._check_random_sized(numpy_seed, jit_unary("np.random.ranf"))
|
|
self._check_random_sized(numpy_seed, jit_unary("np.random.sample"))
|
|
self._check_random_sized(numpy_seed, jit_unary("np.random.rand"))
|
|
|
|
def test_independent_generators(self):
|
|
# PRNGs for Numpy and Python are independent.
|
|
N = 10
|
|
random_seed(1)
|
|
py_numbers = [random_random() for i in range(N)]
|
|
numpy_seed(2)
|
|
np_numbers = [numpy_random() for i in range(N)]
|
|
random_seed(1)
|
|
numpy_seed(2)
|
|
pairs = [(random_random(), numpy_random()) for i in range(N)]
|
|
self.assertPreciseEqual([p[0] for p in pairs], py_numbers)
|
|
self.assertPreciseEqual([p[1] for p in pairs], np_numbers)
|
|
|
|
def _check_getrandbits(self, func, ptr):
|
|
"""
|
|
Check a getrandbits()-like function.
|
|
"""
|
|
# Our implementation follows CPython's for bits <= 64.
|
|
r = self._follow_cpython(ptr)
|
|
for nbits in range(1, 65):
|
|
expected = r.getrandbits(nbits)
|
|
got = func(nbits)
|
|
self.assertPreciseEqual(expected, got)
|
|
self.assertRaises(OverflowError, func, 65)
|
|
self.assertRaises(OverflowError, func, 9999999)
|
|
self.assertRaises(OverflowError, func, -1)
|
|
|
|
def test_random_getrandbits(self):
|
|
self._check_getrandbits(jit_unary("random.getrandbits"), get_py_state_ptr())
|
|
|
|
# Explanation for the large ulps value: on 32-bit platforms, our
|
|
# LLVM-compiled functions use SSE but they are compared against
|
|
# C functions which use x87.
|
|
# On some distributions, the errors seem to accumulate dramatically.
|
|
|
|
def _check_dist(self, func, pyfunc, argslist, niters=3,
|
|
prec='double', ulps=12, pydtype=None):
|
|
assert len(argslist)
|
|
for args in argslist:
|
|
results = [func(*args) for i in range(niters)]
|
|
pyresults = [(pyfunc(*args, dtype=pydtype) if pydtype else pyfunc(*args))
|
|
for i in range(niters)]
|
|
self.assertPreciseEqual(results, pyresults, prec=prec, ulps=ulps,
|
|
msg="for arguments %s" % (args,))
|
|
|
|
def _check_dist_kwargs(self, func, pyfunc, kwargslist, niters=3,
|
|
prec='double', ulps=12, pydtype=None):
|
|
assert len(kwargslist)
|
|
for kwargs in kwargslist:
|
|
results = [func(**kwargs) for i in range(niters)]
|
|
pyresults = [(pyfunc(**kwargs, dtype=pydtype) if pydtype else pyfunc(**kwargs))
|
|
for i in range(niters)]
|
|
self.assertPreciseEqual(results, pyresults, prec=prec, ulps=ulps,
|
|
msg="for arguments %s" % (kwargs,))
|
|
|
|
def _check_gauss(self, func2, func1, func0, ptr):
|
|
"""
|
|
Check a gauss()-like function.
|
|
"""
|
|
# Our implementation follows Numpy's.
|
|
r = self._follow_numpy(ptr)
|
|
if func2 is not None:
|
|
self._check_dist(func2, r.normal,
|
|
[(1.0, 1.0), (2.0, 0.5), (-2.0, 0.5)],
|
|
niters=N // 2 + 10)
|
|
if func1 is not None:
|
|
self._check_dist(func1, r.normal, [(0.5,)])
|
|
if func0 is not None:
|
|
self._check_dist(func0, r.normal, [()])
|
|
|
|
def test_random_gauss(self):
|
|
self._check_gauss(jit_binary("random.gauss"), None, None, get_py_state_ptr())
|
|
|
|
def test_random_normalvariate(self):
|
|
# normalvariate() is really an alias to gauss() in Numba
|
|
# (not in Python, though - they use different algorithms)
|
|
self._check_gauss(jit_binary("random.normalvariate"), None, None,
|
|
get_py_state_ptr())
|
|
|
|
def test_numpy_normal(self):
|
|
self._check_gauss(jit_binary("np.random.normal"),
|
|
jit_unary("np.random.normal"),
|
|
jit_nullary("np.random.normal"),
|
|
get_np_state_ptr())
|
|
|
|
def test_numpy_standard_normal(self):
|
|
self._check_gauss(None, None, jit_nullary("np.random.standard_normal"),
|
|
get_np_state_ptr())
|
|
|
|
def test_numpy_randn(self):
|
|
self._check_gauss(None, None, jit_nullary("np.random.randn"),
|
|
get_np_state_ptr())
|
|
|
|
def _check_lognormvariate(self, func2, func1, func0, ptr):
|
|
"""
|
|
Check a lognormvariate()-like function.
|
|
"""
|
|
# Our implementation follows Numpy's.
|
|
r = self._follow_numpy(ptr)
|
|
if func2 is not None:
|
|
self._check_dist(func2, r.lognormal,
|
|
[(1.0, 1.0), (2.0, 0.5), (-2.0, 0.5)],
|
|
niters=N // 2 + 10)
|
|
if func1 is not None:
|
|
self._check_dist(func1, r.lognormal, [(0.5,)])
|
|
if func0 is not None:
|
|
self._check_dist(func0, r.lognormal, [()])
|
|
|
|
def test_random_lognormvariate(self):
|
|
self._check_lognormvariate(jit_binary("random.lognormvariate"),
|
|
None, None, get_py_state_ptr())
|
|
|
|
def test_numpy_lognormal(self):
|
|
self._check_lognormvariate(jit_binary("np.random.lognormal"),
|
|
jit_unary("np.random.lognormal"),
|
|
jit_nullary("np.random.lognormal"),
|
|
get_np_state_ptr())
|
|
|
|
def _check_randrange(self, func1, func2, func3, ptr, max_width, is_numpy, tp=None):
|
|
"""
|
|
Check a randrange()-like function.
|
|
"""
|
|
# Sanity check
|
|
ints = []
|
|
for i in range(10):
|
|
ints.append(func1(500000000))
|
|
ints.append(func2(5, 500000000))
|
|
if func3 is not None:
|
|
ints.append(func3(5, 500000000, 3))
|
|
if is_numpy:
|
|
rr = self._follow_numpy(ptr).randint
|
|
else:
|
|
rr = self._follow_cpython(ptr).randrange
|
|
widths = [w for w in [1, 5, 8, 5000, 2**40, 2**62 + 2**61] if w < max_width]
|
|
pydtype = tp if is_numpy else None
|
|
for width in widths:
|
|
self._check_dist(func1, rr, [(width,)], niters=10,
|
|
pydtype=pydtype)
|
|
self._check_dist(func2, rr, [(-2, 2 +width)], niters=10,
|
|
pydtype=pydtype)
|
|
if func3 is not None:
|
|
self.assertPreciseEqual(func3(-2, 2 + width, 6),
|
|
rr(-2, 2 + width, 6))
|
|
self.assertPreciseEqual(func3(2 + width, 2, -3),
|
|
rr(2 + width, 2, -3))
|
|
# Empty ranges
|
|
self.assertRaises(ValueError, func1, 0)
|
|
self.assertRaises(ValueError, func1, -5)
|
|
self.assertRaises(ValueError, func2, 5, 5)
|
|
self.assertRaises(ValueError, func2, 5, 2)
|
|
if func3 is not None:
|
|
self.assertRaises(ValueError, func3, 5, 7, -1)
|
|
self.assertRaises(ValueError, func3, 7, 5, 1)
|
|
|
|
def test_random_randrange(self):
|
|
for tp, max_width in [(types.int64, 2**63), (types.int32, 2**31)]:
|
|
cf1 = njit((tp,))(random_randrange1)
|
|
cf2 = njit((tp, tp,),)(random_randrange2)
|
|
cf3 = njit((tp, tp, tp,))(random_randrange3)
|
|
self._check_randrange(cf1, cf2, cf3, get_py_state_ptr(),
|
|
max_width, False)
|
|
|
|
def test_numpy_randint(self):
|
|
for tp, np_tp, max_width in [(types.int64, np.int64, 2**63),
|
|
(types.int32, np.int32, 2**31)]:
|
|
cf1 = njit((tp,))(numpy_randint1)
|
|
cf2 = njit((tp, tp,))(numpy_randint2)
|
|
self._check_randrange(cf1, cf2, None, get_np_state_ptr(), max_width,
|
|
True, np_tp)
|
|
|
|
def _check_randint(self, func, ptr, max_width):
|
|
"""
|
|
Check a randint()-like function.
|
|
"""
|
|
# Sanity check
|
|
ints = []
|
|
for i in range(10):
|
|
ints.append(func(5, 500000000))
|
|
self.assertEqual(len(ints), len(set(ints)), ints)
|
|
|
|
r = self._follow_cpython(ptr)
|
|
for args in [(1, 5), (13, 5000), (20, 2**62 + 2**61)]:
|
|
if args[1] > max_width:
|
|
continue
|
|
self._check_dist(func, r.randint, [args], niters=10)
|
|
# Empty ranges
|
|
self.assertRaises(ValueError, func, 5, 4)
|
|
self.assertRaises(ValueError, func, 5, 2)
|
|
|
|
def test_random_randint(self):
|
|
for tp, max_width in [(types.int64, 2**63), (types.int32, 2**31)]:
|
|
cf = njit((tp, tp,))(random_randint)
|
|
self._check_randint(cf, get_py_state_ptr(), max_width)
|
|
|
|
def _check_uniform(self, func, ptr):
|
|
"""
|
|
Check a uniform()-like function.
|
|
"""
|
|
# Our implementation follows Python's.
|
|
r = self._follow_cpython(ptr)
|
|
self._check_dist(func, r.uniform,
|
|
[(1.5, 1e6), (-2.5, 1e3), (1.5, -2.5)])
|
|
|
|
def _check_any_distrib_kwargs(self, func, ptr, distrib, paramlist):
|
|
"""
|
|
Check any numpy distribution function. Does Numba use the same keyword
|
|
argument names as Numpy?
|
|
And given a fixed seed, do they both return the same samples?
|
|
"""
|
|
# Our implementation follows Numpy's (not Python's)
|
|
r = self._follow_numpy(ptr)
|
|
distrib_method_of_numpy = getattr(r, distrib)
|
|
self._check_dist_kwargs(func, distrib_method_of_numpy, paramlist)
|
|
|
|
|
|
def test_random_uniform(self):
|
|
self._check_uniform(jit_binary("random.uniform"), get_py_state_ptr())
|
|
|
|
def test_numpy_uniform(self):
|
|
self._check_uniform(jit_binary("np.random.uniform"), get_np_state_ptr())
|
|
|
|
def test_numpy_uniform_kwargs(self):
|
|
self._check_any_distrib_kwargs(
|
|
jit_with_kwargs("np.random.uniform", ['low', 'high']),
|
|
get_np_state_ptr(),
|
|
'uniform',
|
|
paramlist=[{'low': 1.5, 'high': 1e6},
|
|
{'low': -2.5, 'high': 1e3},
|
|
{'low': 1.5, 'high': -2.5}])
|
|
|
|
def _check_triangular(self, func2, func3, ptr):
|
|
"""
|
|
Check a triangular()-like function.
|
|
"""
|
|
# Our implementation follows Python's.
|
|
r = self._follow_cpython(ptr)
|
|
if func2 is not None:
|
|
self._check_dist(func2, r.triangular,
|
|
[(1.5, 3.5), (-2.5, 1.5), (1.5, 1.5)])
|
|
self._check_dist(func3, r.triangular, [(1.5, 3.5, 2.2)])
|
|
|
|
def test_random_triangular(self):
|
|
self._check_triangular(jit_binary("random.triangular"),
|
|
jit_ternary("random.triangular"),
|
|
get_py_state_ptr())
|
|
|
|
def test_numpy_triangular(self):
|
|
triangular = jit_ternary("np.random.triangular")
|
|
fixed_triangular = lambda l, r, m: triangular(l, m, r)
|
|
self._check_triangular(None, fixed_triangular, get_np_state_ptr())
|
|
|
|
def _check_gammavariate(self, func2, func1, ptr):
|
|
"""
|
|
Check a gammavariate()-like function.
|
|
"""
|
|
# Our implementation follows Python's.
|
|
r = self._follow_cpython(ptr)
|
|
if func2 is not None:
|
|
self._check_dist(func2, r.gammavariate,
|
|
[(0.5, 2.5), (1.0, 1.5), (1.5, 3.5)])
|
|
if func1 is not None:
|
|
self.assertPreciseEqual(func1(1.5), r.gammavariate(1.5, 1.0))
|
|
# Invalid inputs
|
|
if func2 is not None:
|
|
self.assertRaises(ValueError, func2, 0.0, 1.0)
|
|
self.assertRaises(ValueError, func2, 1.0, 0.0)
|
|
self.assertRaises(ValueError, func2, -0.5, 1.0)
|
|
self.assertRaises(ValueError, func2, 1.0, -0.5)
|
|
if func1 is not None:
|
|
self.assertRaises(ValueError, func1, 0.0)
|
|
self.assertRaises(ValueError, func1, -0.5)
|
|
|
|
def test_random_gammavariate(self):
|
|
self._check_gammavariate(jit_binary("random.gammavariate"), None,
|
|
get_py_state_ptr())
|
|
|
|
def test_numpy_gamma(self):
|
|
self._check_gammavariate(jit_binary("np.random.gamma"),
|
|
jit_unary("np.random.gamma"),
|
|
get_np_state_ptr())
|
|
self._check_gammavariate(None,
|
|
jit_unary("np.random.standard_gamma"),
|
|
get_np_state_ptr())
|
|
|
|
def _check_betavariate(self, func, ptr):
|
|
"""
|
|
Check a betavariate()-like function.
|
|
"""
|
|
# Our implementation follows Python's.
|
|
r = self._follow_cpython(ptr)
|
|
self._check_dist(func, r.betavariate, [(0.5, 2.5)])
|
|
# Invalid inputs
|
|
self.assertRaises(ValueError, func, 0.0, 1.0)
|
|
self.assertRaises(ValueError, func, 1.0, 0.0)
|
|
self.assertRaises(ValueError, func, -0.5, 1.0)
|
|
self.assertRaises(ValueError, func, 1.0, -0.5)
|
|
|
|
def test_random_betavariate(self):
|
|
self._check_betavariate(jit_binary("random.betavariate"), get_py_state_ptr())
|
|
|
|
def test_numpy_beta(self):
|
|
self._check_betavariate(jit_binary("np.random.beta"), get_np_state_ptr())
|
|
|
|
def _check_vonmisesvariate(self, func, ptr):
|
|
"""
|
|
Check a vonmisesvariate()-like function.
|
|
"""
|
|
r = self._follow_cpython(ptr)
|
|
self._check_dist(func, r.vonmisesvariate, [(0.5, 2.5)])
|
|
|
|
def test_random_vonmisesvariate(self):
|
|
self._check_vonmisesvariate(jit_binary("random.vonmisesvariate"),
|
|
get_py_state_ptr())
|
|
|
|
def test_numpy_vonmises(self):
|
|
self._check_vonmisesvariate(jit_binary("np.random.vonmises"),
|
|
get_np_state_ptr())
|
|
|
|
def _check_expovariate(self, func, ptr):
|
|
"""
|
|
Check a expovariate()-like function. Note the second argument
|
|
is inversed compared to np.random.exponential().
|
|
"""
|
|
r = self._follow_numpy(ptr)
|
|
for lambd in (0.2, 0.5, 1.5):
|
|
for i in range(3):
|
|
self.assertPreciseEqual(func(lambd), r.exponential(1 / lambd),
|
|
prec='double')
|
|
|
|
def test_random_expovariate(self):
|
|
self._check_expovariate(jit_unary("random.expovariate"), get_py_state_ptr())
|
|
|
|
def _check_exponential(self, func1, func0, ptr):
|
|
"""
|
|
Check a exponential()-like function.
|
|
"""
|
|
r = self._follow_numpy(ptr)
|
|
if func1 is not None:
|
|
self._check_dist(func1, r.exponential, [(0.5,), (1.0,), (1.5,)])
|
|
if func0 is not None:
|
|
self._check_dist(func0, r.exponential, [()])
|
|
|
|
def test_numpy_exponential(self):
|
|
self._check_exponential(jit_unary("np.random.exponential"),
|
|
jit_nullary("np.random.exponential"),
|
|
get_np_state_ptr())
|
|
|
|
def test_numpy_standard_exponential(self):
|
|
self._check_exponential(None,
|
|
jit_nullary("np.random.standard_exponential"),
|
|
get_np_state_ptr())
|
|
|
|
def _check_paretovariate(self, func, ptr):
|
|
"""
|
|
Check a paretovariate()-like function.
|
|
"""
|
|
# Our implementation follows Python's.
|
|
r = self._follow_cpython(ptr)
|
|
self._check_dist(func, r.paretovariate, [(0.5,), (3.5,)])
|
|
|
|
def test_random_paretovariate(self):
|
|
self._check_paretovariate(jit_unary("random.paretovariate"), get_py_state_ptr())
|
|
|
|
def test_numpy_pareto(self):
|
|
pareto = jit_unary("np.random.pareto")
|
|
fixed_pareto = lambda a: pareto(a) + 1.0
|
|
self._check_paretovariate(fixed_pareto, get_np_state_ptr())
|
|
|
|
def _check_weibullvariate(self, func2, func1, ptr):
|
|
"""
|
|
Check a weibullvariate()-like function.
|
|
"""
|
|
# Our implementation follows Python's.
|
|
r = self._follow_cpython(ptr)
|
|
if func2 is not None:
|
|
self._check_dist(func2, r.weibullvariate, [(0.5, 2.5)])
|
|
if func1 is not None:
|
|
for i in range(3):
|
|
self.assertPreciseEqual(func1(2.5),
|
|
r.weibullvariate(1.0, 2.5))
|
|
|
|
def test_random_weibullvariate(self):
|
|
self._check_weibullvariate(jit_binary("random.weibullvariate"),
|
|
None, get_py_state_ptr())
|
|
|
|
def test_numpy_weibull(self):
|
|
self._check_weibullvariate(None, jit_unary("np.random.weibull"),
|
|
get_np_state_ptr())
|
|
|
|
def test_numpy_binomial(self):
|
|
# We follow Numpy's algorithm up to n*p == 30
|
|
binomial = jit_binary("np.random.binomial")
|
|
r = self._follow_numpy(get_np_state_ptr(), 0)
|
|
self._check_dist(binomial, r.binomial, [(18, 0.25)])
|
|
# Sanity check many values
|
|
for n in (100, 1000, 10000):
|
|
self.assertEqual(binomial(n, 0.0), 0)
|
|
self.assertEqual(binomial(n, 1.0), n)
|
|
for p in (0.0001, 0.1, 0.4, 0.49999, 0.5, 0.50001, 0.8, 0.9, 0.9999):
|
|
r = binomial(n, p)
|
|
if p > 0.5:
|
|
r = n - r
|
|
p = 1 - p
|
|
self.assertGreaterEqual(r, 0)
|
|
self.assertLessEqual(r, n)
|
|
expected = p * n
|
|
tol = 3 * n / math.sqrt(n)
|
|
self.assertGreaterEqual(r, expected - tol, (p, n, r))
|
|
self.assertLessEqual(r, expected + tol, (p, n, r))
|
|
# Invalid values
|
|
self.assertRaises(ValueError, binomial, -1, 0.5)
|
|
self.assertRaises(ValueError, binomial, 10, -0.1)
|
|
self.assertRaises(ValueError, binomial, 10, 1.1)
|
|
|
|
def test_numpy_chisquare(self):
|
|
chisquare = jit_unary("np.random.chisquare")
|
|
r = self._follow_cpython(get_np_state_ptr())
|
|
self._check_dist(chisquare,
|
|
functools.partial(py_chisquare, r),
|
|
[(1.5,), (2.5,)])
|
|
|
|
def test_numpy_f(self):
|
|
f = jit_binary("np.random.f")
|
|
r = self._follow_cpython(get_np_state_ptr())
|
|
self._check_dist(f, functools.partial(py_f, r),
|
|
[(0.5, 1.5), (1.5, 0.8)])
|
|
|
|
def test_numpy_geometric(self):
|
|
geom = jit_unary("np.random.geometric")
|
|
# p out of domain
|
|
self.assertRaises(ValueError, geom, -1.0)
|
|
self.assertRaises(ValueError, geom, 0.0)
|
|
self.assertRaises(ValueError, geom, 1.001)
|
|
# Some basic checks
|
|
N = 200
|
|
r = [geom(1.0) for i in range(N)]
|
|
self.assertPreciseEqual(r, [1] * N)
|
|
r = [geom(0.9) for i in range(N)]
|
|
n = r.count(1)
|
|
self.assertGreaterEqual(n, N // 2)
|
|
self.assertLess(n, N)
|
|
self.assertFalse([i for i in r if i > 1000]) # unlikely
|
|
r = [geom(0.4) for i in range(N)]
|
|
self.assertTrue([i for i in r if i > 4]) # likely
|
|
r = [geom(0.01) for i in range(N)]
|
|
self.assertTrue([i for i in r if i > 50]) # likely
|
|
r = [geom(1e-15) for i in range(N)]
|
|
self.assertTrue([i for i in r if i > 2**32]) # likely
|
|
|
|
def test_numpy_gumbel(self):
|
|
gumbel = jit_binary("np.random.gumbel")
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
self._check_dist(gumbel, r.gumbel, [(0.0, 1.0), (-1.5, 3.5)])
|
|
|
|
def test_numpy_gumbel_kwargs(self):
|
|
self._check_any_distrib_kwargs(
|
|
jit_with_kwargs("np.random.gumbel", ['loc', 'scale']),
|
|
get_np_state_ptr(),
|
|
distrib="gumbel",
|
|
paramlist=[{'loc': 0.0, 'scale': 1.0},
|
|
{'loc': -1.5, 'scale': 3.5}])
|
|
|
|
|
|
def test_numpy_hypergeometric(self):
|
|
# Our implementation follows Numpy's up to nsamples = 10.
|
|
hg = jit_ternary("np.random.hypergeometric")
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
self._check_dist(hg, r.hypergeometric,
|
|
[(1000, 5000, 10), (5000, 1000, 10)],
|
|
niters=30)
|
|
# Sanity checks
|
|
r = [hg(1000, 1000, 100) for i in range(100)]
|
|
self.assertTrue(all(x >= 0 and x <= 100 for x in r), r)
|
|
self.assertGreaterEqual(np.mean(r), 40.0)
|
|
self.assertLessEqual(np.mean(r), 60.0)
|
|
r = [hg(1000, 100000, 100) for i in range(100)]
|
|
self.assertTrue(all(x >= 0 and x <= 100 for x in r), r)
|
|
self.assertLessEqual(np.mean(r), 10.0)
|
|
r = [hg(100000, 1000, 100) for i in range(100)]
|
|
self.assertTrue(all(x >= 0 and x <= 100 for x in r), r)
|
|
self.assertGreaterEqual(np.mean(r), 90.0)
|
|
|
|
def test_numpy_laplace(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
self._check_dist(jit_binary("np.random.laplace"), r.laplace,
|
|
[(0.0, 1.0), (-1.5, 3.5)])
|
|
self._check_dist(jit_unary("np.random.laplace"), r.laplace,
|
|
[(0.0,), (-1.5,)])
|
|
self._check_dist(jit_nullary("np.random.laplace"), r.laplace, [()])
|
|
|
|
def test_numpy_logistic(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
self._check_dist(jit_binary("np.random.logistic"), r.logistic,
|
|
[(0.0, 1.0), (-1.5, 3.5)])
|
|
self._check_dist(jit_unary("np.random.logistic"), r.logistic,
|
|
[(0.0,), (-1.5,)])
|
|
self._check_dist(jit_nullary("np.random.logistic"), r.logistic, [()])
|
|
|
|
def test_numpy_logseries(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
logseries = jit_unary("np.random.logseries")
|
|
self._check_dist(logseries, r.logseries,
|
|
[(0.1,), (0.99,), (0.9999,)],
|
|
niters=50)
|
|
# Numpy's logseries overflows on 32-bit builds, so instead
|
|
# hardcode Numpy's (correct) output on 64-bit builds.
|
|
r = self._follow_numpy(get_np_state_ptr(), seed=1)
|
|
self.assertEqual([logseries(0.9999999999999) for i in range(10)],
|
|
[2022733531, 77296, 30, 52204, 9341294, 703057324,
|
|
413147702918, 1870715907, 16009330, 738])
|
|
self.assertRaises(ValueError, logseries, 0.0)
|
|
self.assertRaises(ValueError, logseries, -0.1)
|
|
self.assertRaises(ValueError, logseries, 1.1)
|
|
|
|
def test_numpy_poisson(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
poisson = jit_unary("np.random.poisson")
|
|
# Our implementation follows Numpy's.
|
|
self._check_dist(poisson, r.poisson,
|
|
[(0.0,), (0.5,), (2.0,), (10.0,), (900.5,)],
|
|
niters=50)
|
|
self.assertRaises(ValueError, poisson, -0.1)
|
|
|
|
def test_numpy_negative_binomial(self):
|
|
self._follow_numpy(get_np_state_ptr(), 0)
|
|
negbin = jit_binary("np.random.negative_binomial")
|
|
self.assertEqual([negbin(10, 0.9) for i in range(10)],
|
|
[2, 3, 1, 5, 2, 1, 0, 1, 0, 0])
|
|
self.assertEqual([negbin(10, 0.1) for i in range(10)],
|
|
[55, 71, 56, 57, 56, 56, 34, 55, 101, 67])
|
|
self.assertEqual([negbin(1000, 0.1) for i in range(10)],
|
|
[9203, 8640, 9081, 9292, 8938,
|
|
9165, 9149, 8774, 8886, 9117])
|
|
m = np.mean([negbin(1000000000, 0.1)
|
|
for i in range(50)])
|
|
self.assertGreater(m, 9e9 * 0.99)
|
|
self.assertLess(m, 9e9 * 1.01)
|
|
self.assertRaises(ValueError, negbin, 0, 0.5)
|
|
self.assertRaises(ValueError, negbin, -1, 0.5)
|
|
self.assertRaises(ValueError, negbin, 10, -0.1)
|
|
self.assertRaises(ValueError, negbin, 10, 1.1)
|
|
|
|
def test_numpy_power(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
power = jit_unary("np.random.power")
|
|
self._check_dist(power, r.power,
|
|
[(0.1,), (0.5,), (0.9,), (6.0,)])
|
|
self.assertRaises(ValueError, power, 0.0)
|
|
self.assertRaises(ValueError, power, -0.1)
|
|
|
|
def test_numpy_rayleigh(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
rayleigh1 = jit_unary("np.random.rayleigh")
|
|
rayleigh0 = jit_nullary("np.random.rayleigh")
|
|
self._check_dist(rayleigh1, r.rayleigh,
|
|
[(0.1,), (0.8,), (25.,), (1e3,)])
|
|
self._check_dist(rayleigh0, r.rayleigh, [()])
|
|
self.assertRaises(ValueError, rayleigh1, 0.0)
|
|
self.assertRaises(ValueError, rayleigh1, -0.1)
|
|
|
|
def test_numpy_standard_cauchy(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
cauchy = jit_nullary("np.random.standard_cauchy")
|
|
self._check_dist(cauchy, r.standard_cauchy, [()])
|
|
|
|
def test_numpy_standard_t(self):
|
|
# We use CPython's algorithm for the gamma dist and numpy's
|
|
# for the normal dist. Standard T calls both so we can't check
|
|
# against either generator's output.
|
|
r = self._follow_cpython(get_np_state_ptr())
|
|
standard_t = jit_unary("np.random.standard_t")
|
|
avg = np.mean([standard_t(5) for i in range(5000)])
|
|
# Sanity check
|
|
self.assertLess(abs(avg), 0.5)
|
|
|
|
def test_numpy_wald(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
wald = jit_binary("np.random.wald")
|
|
self._check_dist(wald, r.wald, [(1.0, 1.0), (2.0, 5.0)])
|
|
self.assertRaises(ValueError, wald, 0.0, 1.0)
|
|
self.assertRaises(ValueError, wald, -0.1, 1.0)
|
|
self.assertRaises(ValueError, wald, 1.0, 0.0)
|
|
self.assertRaises(ValueError, wald, 1.0, -0.1)
|
|
|
|
def test_numpy_wald_kwargs(self):
|
|
numba_version = jit_with_kwargs("np.random.wald", ['mean', 'scale'])
|
|
self._check_any_distrib_kwargs(numba_version,
|
|
get_np_state_ptr(),
|
|
distrib="wald",
|
|
paramlist=[{'mean': 1.0, 'scale': 1.0},
|
|
{'mean': 2.0, 'scale': 5.0}])
|
|
self.assertRaises(ValueError, numba_version, 0.0, 1.0)
|
|
self.assertRaises(ValueError, numba_version, -0.1, 1.0)
|
|
self.assertRaises(ValueError, numba_version, 1.0, 0.0)
|
|
self.assertRaises(ValueError, numba_version, 1.0, -0.1)
|
|
|
|
def test_numpy_zipf(self):
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
zipf = jit_unary("np.random.zipf")
|
|
self._check_dist(zipf, r.zipf, [(1.5,), (2.5,)], niters=100)
|
|
for val in (1.0, 0.5, 0.0, -0.1):
|
|
self.assertRaises(ValueError, zipf, val)
|
|
|
|
def _check_shuffle(self, func, ptr, is_numpy):
|
|
"""
|
|
Check a shuffle()-like function for arrays.
|
|
"""
|
|
arrs = [np.arange(20), np.arange(32).reshape((8, 4))]
|
|
if is_numpy:
|
|
r = self._follow_numpy(ptr)
|
|
else:
|
|
r = self._follow_cpython(ptr)
|
|
for a in arrs:
|
|
for i in range(3):
|
|
got = a.copy()
|
|
expected = a.copy()
|
|
func(got)
|
|
if is_numpy or len(a.shape) == 1:
|
|
r.shuffle(expected)
|
|
self.assertPreciseEqual(got, expected)
|
|
# Test with an arbitrary buffer-providing object
|
|
a = arrs[0]
|
|
b = a.copy()
|
|
func(memoryview(b))
|
|
self.assertNotEqual(list(a), list(b))
|
|
self.assertEqual(sorted(a), sorted(b))
|
|
# Read-only object
|
|
with self.assertTypingError():
|
|
func(memoryview(b"xyz"))
|
|
|
|
def test_random_shuffle(self):
|
|
self._check_shuffle(jit_unary("random.shuffle"), get_py_state_ptr(), False)
|
|
|
|
def test_numpy_shuffle(self):
|
|
self._check_shuffle(jit_unary("np.random.shuffle"), get_np_state_ptr(), True)
|
|
|
|
def _check_startup_randomness(self, func_name, func_args):
|
|
"""
|
|
Check that the state is properly randomized at startup.
|
|
"""
|
|
code = """if 1:
|
|
from numba.tests import test_random
|
|
func = getattr(test_random, %(func_name)r)
|
|
print(func(*%(func_args)r))
|
|
""" % (locals())
|
|
numbers = set()
|
|
for i in range(3):
|
|
popen = subprocess.Popen([sys.executable, "-c", code],
|
|
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
out, err = popen.communicate()
|
|
if popen.returncode != 0:
|
|
raise AssertionError("process failed with code %s: stderr follows\n%s\n"
|
|
% (popen.returncode, err.decode()))
|
|
numbers.add(float(out.strip()))
|
|
self.assertEqual(len(numbers), 3, numbers)
|
|
|
|
def test_random_random_startup(self):
|
|
self._check_startup_randomness("random_random", ())
|
|
|
|
def test_random_gauss_startup(self):
|
|
self._check_startup_randomness("random_gauss", (1.0, 1.0))
|
|
|
|
def test_numpy_random_startup(self):
|
|
self._check_startup_randomness("numpy_random", ())
|
|
|
|
def test_numpy_gauss_startup(self):
|
|
self._check_startup_randomness("numpy_normal", (1.0, 1.0))
|
|
|
|
def test_numpy_random_permutation(self):
|
|
func = jit_unary("np.random.permutation")
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
for s in [5, 10, 15, 20]:
|
|
a = np.arange(s)
|
|
b = a.copy()
|
|
# Test array version
|
|
self.assertPreciseEqual(func(a), r.permutation(a))
|
|
# Test int version
|
|
self.assertPreciseEqual(func(s), r.permutation(s))
|
|
# Permutation should not modify its argument
|
|
self.assertPreciseEqual(a, b)
|
|
# Check multi-dimensional arrays
|
|
arrs = [np.arange(10).reshape(2, 5),
|
|
np.arange(27).reshape(3, 3, 3),
|
|
np.arange(36).reshape(2, 3, 3, 2)]
|
|
for a in arrs:
|
|
b = a.copy()
|
|
self.assertPreciseEqual(func(a), r.permutation(a))
|
|
self.assertPreciseEqual(a, b)
|
|
|
|
|
|
class TestRandomArrays(BaseTest):
|
|
"""
|
|
Test array-producing variants of np.random.* functions.
|
|
"""
|
|
|
|
def _compile_array_dist(self, funcname, nargs):
|
|
qualname = "np.random.%s" % (funcname,)
|
|
argstring = ', '.join('abcd'[:nargs])
|
|
return jit_with_args(qualname, argstring)
|
|
|
|
def _check_array_dist(self, funcname, scalar_args):
|
|
"""
|
|
Check returning an array according to a given distribution.
|
|
"""
|
|
cfunc = self._compile_array_dist(funcname, len(scalar_args) + 1)
|
|
r = self._follow_numpy(get_np_state_ptr())
|
|
pyfunc = getattr(r, funcname)
|
|
for size in (8, (2, 3)):
|
|
args = scalar_args + (size,)
|
|
expected = pyfunc(*args)
|
|
got = cfunc(*args)
|
|
# Numpy may return int32s where we return int64s, adjust
|
|
if (expected.dtype == np.dtype('int32')
|
|
and got.dtype == np.dtype('int64')):
|
|
expected = expected.astype(got.dtype)
|
|
self.assertPreciseEqual(expected, got, prec='double', ulps=5)
|
|
args = scalar_args + (None,)
|
|
expected = pyfunc(*args)
|
|
got = cfunc(*args)
|
|
self.assertPreciseEqual(expected, got, prec='double', ulps=5)
|
|
|
|
def _check_array_dist_gamma(self, funcname, scalar_args, extra_pyfunc_args):
|
|
"""
|
|
Check returning an array according to a given gamma distribution,
|
|
where we use CPython's implementation rather than NumPy's.
|
|
"""
|
|
cfunc = self._compile_array_dist(funcname, len(scalar_args) + 1)
|
|
r = self._follow_cpython(get_np_state_ptr())
|
|
pyfunc = getattr(r, "gammavariate")
|
|
pyfunc_args = scalar_args + extra_pyfunc_args
|
|
pyrandom = lambda *_args: pyfunc(*pyfunc_args)
|
|
|
|
args = scalar_args + (None,)
|
|
expected = pyrandom()
|
|
got = cfunc(*args)
|
|
self.assertPreciseEqual(expected, got, prec='double', ulps=5)
|
|
for size in (8, (2, 3)):
|
|
args = scalar_args + (size,)
|
|
expected = np.empty(size)
|
|
expected_flat = expected.flat
|
|
for idx in range(expected.size):
|
|
expected_flat[idx] = pyrandom()
|
|
got = cfunc(*args)
|
|
self.assertPreciseEqual(expected, got, prec='double', ulps=5)
|
|
|
|
def _check_array_dist_self(self, funcname, scalar_args):
|
|
"""
|
|
Check function returning an array against its scalar implementation.
|
|
Because we use the CPython gamma distribution rather than the NumPy one,
|
|
distributions which use the gamma distribution vary in ways that are
|
|
difficult to compare. Instead, we compile both the array and scalar
|
|
versions and check that the array is filled with the same values as
|
|
we would expect from the scalar version.
|
|
"""
|
|
@numba.njit
|
|
def reset():
|
|
np.random.seed(1234)
|
|
|
|
array_func = self._compile_array_dist(funcname, len(scalar_args) + 1)
|
|
|
|
qualname = "np.random.%s" % (funcname,)
|
|
argstring = ', '.join('abcd'[:len(scalar_args)])
|
|
scalar_func = jit_with_args(qualname, argstring)
|
|
|
|
for size in (8, (2, 3)):
|
|
args = scalar_args + (size,)
|
|
reset()
|
|
got = array_func(*args)
|
|
reset()
|
|
# We're just going to go with whatever type the array version
|
|
# gives us and hope it's not Boolean or something useless.
|
|
expected = np.empty(size, dtype=got.dtype)
|
|
flat = expected.flat
|
|
for idx in range(expected.size):
|
|
flat[idx] = scalar_func(*scalar_args)
|
|
self.assertPreciseEqual(expected, got, prec='double', ulps=5)
|
|
|
|
reset()
|
|
args = scalar_args + (None,)
|
|
expected = scalar_func(*scalar_args)
|
|
reset()
|
|
got = array_func(*args)
|
|
self.assertPreciseEqual(expected, got, prec='double', ulps=5)
|
|
|
|
def test_numpy_randint(self):
|
|
cfunc = self._compile_array_dist("randint", 3)
|
|
low, high = 1000, 10000
|
|
size = (30, 30)
|
|
res = cfunc(low, high, size)
|
|
self.assertIsInstance(res, np.ndarray)
|
|
self.assertEqual(res.shape, size)
|
|
self.assertIn(res.dtype, (np.dtype('int32'), np.dtype('int64')))
|
|
self.assertTrue(np.all(res >= low))
|
|
self.assertTrue(np.all(res < high))
|
|
# Crude statistical tests
|
|
mean = (low + high) / 2
|
|
tol = (high - low) / 20
|
|
self.assertGreaterEqual(res.mean(), mean - tol)
|
|
self.assertLessEqual(res.mean(), mean + tol)
|
|
|
|
def test_numpy_random_random(self):
|
|
cfunc = self._compile_array_dist("random", 1)
|
|
size = (30, 30)
|
|
res = cfunc(size)
|
|
self.assertIsInstance(res, np.ndarray)
|
|
self.assertEqual(res.shape, size)
|
|
self.assertEqual(res.dtype, np.dtype('float64'))
|
|
# Results are within expected bounds
|
|
self.assertTrue(np.all(res >= 0.0))
|
|
self.assertTrue(np.all(res < 1.0))
|
|
# Crude statistical tests
|
|
self.assertTrue(np.any(res <= 0.1))
|
|
self.assertTrue(np.any(res >= 0.9))
|
|
mean = res.mean()
|
|
self.assertGreaterEqual(mean, 0.45)
|
|
self.assertLessEqual(mean, 0.55)
|
|
|
|
# Sanity-check various distributions. For convenience, we only check
|
|
# those distributions that produce the exact same values as Numpy's.
|
|
|
|
def test_numpy_beta(self):
|
|
self._check_array_dist_self("beta", (0.5, 2.5))
|
|
|
|
def test_numpy_binomial(self):
|
|
self._check_array_dist("binomial", (20, 0.5))
|
|
|
|
def test_numpy_chisquare(self):
|
|
self._check_array_dist_self("chisquare", (1.5,))
|
|
|
|
def test_numpy_exponential(self):
|
|
self._check_array_dist("exponential", (1.5,))
|
|
|
|
def test_numpy_f(self):
|
|
self._check_array_dist_self("f", (0.5, 1.5))
|
|
|
|
def test_numpy_gamma(self):
|
|
self._check_array_dist_gamma("gamma", (2.0, 1.0), ())
|
|
|
|
def test_numpy_geometric(self):
|
|
self._check_array_dist("geometric", (1.0,))
|
|
|
|
def test_numpy_gumbel(self):
|
|
self._check_array_dist("gumbel", (1.5, 0.5))
|
|
|
|
def test_numpy_hypergeometric(self):
|
|
self._check_array_dist("hypergeometric", (1000, 5000, 10))
|
|
|
|
def test_numpy_laplace(self):
|
|
self._check_array_dist("laplace", (1.5, 0.5))
|
|
|
|
def test_numpy_logistic(self):
|
|
self._check_array_dist("logistic", (1.5, 0.5))
|
|
|
|
def test_numpy_lognormal(self):
|
|
self._check_array_dist("lognormal", (1.5, 2.0))
|
|
|
|
def test_numpy_logseries(self):
|
|
self._check_array_dist("logseries", (0.8,))
|
|
|
|
def test_numpy_normal(self):
|
|
self._check_array_dist("normal", (0.5, 2.0))
|
|
|
|
def test_numpy_pareto(self):
|
|
self._check_array_dist("pareto", (0.5,))
|
|
|
|
def test_numpy_poisson(self):
|
|
self._check_array_dist("poisson", (0.8,))
|
|
|
|
def test_numpy_power(self):
|
|
self._check_array_dist("power", (0.8,))
|
|
|
|
def test_numpy_rand(self):
|
|
cfunc = jit(nopython=True)(numpy_check_rand)
|
|
expected, got = cfunc(42, 2, 3)
|
|
self.assertEqual(got.shape, (2, 3))
|
|
self.assertPreciseEqual(expected, got)
|
|
|
|
def test_numpy_randn(self):
|
|
cfunc = jit(nopython=True)(numpy_check_randn)
|
|
expected, got = cfunc(42, 2, 3)
|
|
self.assertEqual(got.shape, (2, 3))
|
|
self.assertPreciseEqual(expected, got)
|
|
|
|
def test_numpy_rayleigh(self):
|
|
self._check_array_dist("rayleigh", (0.8,))
|
|
|
|
def test_numpy_standard_cauchy(self):
|
|
self._check_array_dist("standard_cauchy", ())
|
|
|
|
def test_numpy_standard_exponential(self):
|
|
self._check_array_dist("standard_exponential", ())
|
|
|
|
def test_numpy_standard_gamma(self):
|
|
self._check_array_dist_gamma("standard_gamma", (2.0,), (1.0,))
|
|
|
|
def test_numpy_standard_normal(self):
|
|
self._check_array_dist("standard_normal", ())
|
|
|
|
def test_numpy_triangular(self):
|
|
self._check_array_dist("triangular", (1.5, 2.2, 3.5))
|
|
|
|
def test_numpy_uniform(self):
|
|
self._check_array_dist("uniform", (0.1, 0.4))
|
|
|
|
def test_numpy_wald(self):
|
|
self._check_array_dist("wald", (0.1, 0.4))
|
|
|
|
def test_numpy_vonmises(self):
|
|
self._check_array_dist_self("vonmises", (0.5, 2.5))
|
|
|
|
def test_numpy_zipf(self):
|
|
self._check_array_dist("zipf", (2.5,))
|
|
|
|
|
|
class TestRandomChoice(BaseTest):
|
|
"""
|
|
Test np.random.choice.
|
|
"""
|
|
|
|
def _check_results(self, pop, res, replace=True):
|
|
"""
|
|
Check basic expectations about a batch of samples.
|
|
"""
|
|
spop = set(pop)
|
|
sres = set(res)
|
|
# All results are in the population
|
|
self.assertLessEqual(sres, spop)
|
|
# Sorted results are unlikely
|
|
self.assertNotEqual(sorted(res), list(res))
|
|
if replace:
|
|
# Duplicates are likely
|
|
self.assertLess(len(sres), len(res), res)
|
|
else:
|
|
# No duplicates
|
|
self.assertEqual(len(sres), len(res), res)
|
|
|
|
def _check_dist(self, pop, samples):
|
|
"""
|
|
Check distribution of some samples.
|
|
"""
|
|
# Sanity check that we have enough samples
|
|
self.assertGreaterEqual(len(samples), len(pop) * 100)
|
|
# Check equidistribution of samples
|
|
expected_frequency = len(samples) / len(pop)
|
|
c = collections.Counter(samples)
|
|
for value in pop:
|
|
n = c[value]
|
|
self.assertGreaterEqual(n, expected_frequency * 0.5)
|
|
self.assertLessEqual(n, expected_frequency * 2.0)
|
|
|
|
def _accumulate_array_results(self, func, nresults):
|
|
"""
|
|
Accumulate array results produced by *func* until they reach
|
|
*nresults* elements.
|
|
"""
|
|
res = []
|
|
while len(res) < nresults:
|
|
res += list(func().flat)
|
|
return res[:nresults]
|
|
|
|
def _check_choice_1(self, a, pop):
|
|
"""
|
|
Check choice(a) against pop.
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_choice1)
|
|
n = len(pop)
|
|
res = [cfunc(a) for i in range(n)]
|
|
self._check_results(pop, res)
|
|
dist = [cfunc(a) for i in range(n * 100)]
|
|
self._check_dist(pop, dist)
|
|
|
|
def test_choice_scalar_1(self):
|
|
"""
|
|
Test choice(int)
|
|
"""
|
|
n = 50
|
|
pop = list(range(n))
|
|
self._check_choice_1(n, pop)
|
|
|
|
def test_choice_array_1(self):
|
|
"""
|
|
Test choice(array)
|
|
"""
|
|
pop = np.arange(50) * 2 + 100
|
|
self._check_choice_1(pop, pop)
|
|
|
|
def _check_array_results(self, func, pop, replace=True):
|
|
"""
|
|
Check array results produced by *func* and their distribution.
|
|
"""
|
|
n = len(pop)
|
|
res = list(func().flat)
|
|
self._check_results(pop, res, replace)
|
|
dist = self._accumulate_array_results(func, n * 100)
|
|
self._check_dist(pop, dist)
|
|
|
|
def _check_choice_2(self, a, pop):
|
|
"""
|
|
Check choice(a, size) against pop.
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_choice2)
|
|
n = len(pop)
|
|
# Final sizes should be large enough, so as to stress
|
|
# replacement
|
|
sizes = [n - 10, (3, (n - 1) // 3), n * 10]
|
|
|
|
for size in sizes:
|
|
# Check result shape
|
|
res = cfunc(a, size)
|
|
expected_shape = size if isinstance(size, tuple) else (size,)
|
|
self.assertEqual(res.shape, expected_shape)
|
|
# Check results and their distribution
|
|
self._check_array_results(lambda: cfunc(a, size), pop)
|
|
|
|
def test_choice_scalar_2(self):
|
|
"""
|
|
Test choice(int, size)
|
|
"""
|
|
n = 50
|
|
pop = np.arange(n)
|
|
self._check_choice_2(n, pop)
|
|
|
|
def test_choice_array_2(self):
|
|
"""
|
|
Test choice(array, size)
|
|
"""
|
|
pop = np.arange(50) * 2 + 100
|
|
self._check_choice_2(pop, pop)
|
|
|
|
def _check_choice_3(self, a, pop):
|
|
"""
|
|
Check choice(a, size, replace) against pop.
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_choice3)
|
|
n = len(pop)
|
|
# Final sizes should be close but slightly <= n, so as to stress
|
|
# replacement (or not)
|
|
sizes = [n - 10, (3, (n - 1) // 3)]
|
|
replaces = [True, False]
|
|
|
|
# Check result shapes
|
|
for size in sizes:
|
|
for replace in [True, False]:
|
|
res = cfunc(a, size, replace)
|
|
expected_shape = size if isinstance(size, tuple) else (size,)
|
|
self.assertEqual(res.shape, expected_shape)
|
|
|
|
# Check results for replace=True
|
|
for size in sizes:
|
|
self._check_array_results(lambda: cfunc(a, size, True), pop)
|
|
# Check results for replace=False
|
|
for size in sizes:
|
|
self._check_array_results(lambda: cfunc(a, size, False), pop, False)
|
|
|
|
# Can't ask for more samples than population size with replace=False
|
|
for size in [n + 1, (3, n // 3 + 1)]:
|
|
with self.assertRaises(ValueError):
|
|
cfunc(a, size, False)
|
|
|
|
def test_choice_scalar_3(self):
|
|
"""
|
|
Test choice(int, size, replace)
|
|
"""
|
|
n = 50
|
|
pop = np.arange(n)
|
|
self._check_choice_3(n, pop)
|
|
|
|
def test_choice_array_3(self):
|
|
"""
|
|
Test choice(array, size, replace)
|
|
"""
|
|
pop = np.arange(50) * 2 + 100
|
|
self._check_choice_3(pop, pop)
|
|
|
|
def test_choice_follows_seed(self):
|
|
# See issue #3888, np.random.choice must acknowledge the seed
|
|
|
|
@jit(nopython=True)
|
|
def numba_rands(n_to_return, choice_array):
|
|
np.random.seed(1337)
|
|
out = np.empty((n_to_return, 2), np.int32)
|
|
for i in range(n_to_return):
|
|
out[i] = np.random.choice(choice_array, 2, False)
|
|
return out
|
|
|
|
choice_array = np.random.randint(300, size=1000).astype(np.int32)
|
|
tmp_np = choice_array.copy()
|
|
expected = numba_rands.py_func(5, tmp_np)
|
|
tmp_nb = choice_array.copy()
|
|
got = numba_rands(5, tmp_nb)
|
|
np.testing.assert_allclose(expected, got)
|
|
# check no mutation
|
|
np.testing.assert_allclose(choice_array, tmp_np)
|
|
np.testing.assert_allclose(choice_array, tmp_nb)
|
|
|
|
|
|
class TestRandomMultinomial(BaseTest):
|
|
"""
|
|
Test np.random.multinomial.
|
|
"""
|
|
# A biased dice
|
|
pvals = np.array([1, 1, 1, 2, 3, 1], dtype=np.float64)
|
|
pvals /= pvals.sum()
|
|
|
|
def _check_sample(self, n, pvals, sample):
|
|
"""
|
|
Check distribution of some samples.
|
|
"""
|
|
self.assertIsInstance(sample, np.ndarray)
|
|
self.assertEqual(sample.shape, (len(pvals),))
|
|
self.assertIn(sample.dtype, (np.dtype('int32'), np.dtype('int64')))
|
|
# Statistical properties
|
|
self.assertEqual(sample.sum(), n)
|
|
for p, nexp in zip(pvals, sample):
|
|
self.assertGreaterEqual(nexp, 0)
|
|
self.assertLessEqual(nexp, n)
|
|
pexp = float(nexp) / n
|
|
self.assertGreaterEqual(pexp, p * 0.5)
|
|
self.assertLessEqual(pexp, p * 2.0)
|
|
|
|
def test_multinomial_2(self):
|
|
"""
|
|
Test multinomial(n, pvals)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_multinomial2)
|
|
n, pvals = 1000, self.pvals
|
|
res = cfunc(n, pvals)
|
|
self._check_sample(n, pvals, res)
|
|
# pvals as list
|
|
pvals = list(pvals)
|
|
res = cfunc(n, pvals)
|
|
self._check_sample(n, pvals, res)
|
|
# A case with extreme probabilities
|
|
n = 1000000
|
|
pvals = np.array([1, 0, n // 100, 1], dtype=np.float64)
|
|
pvals /= pvals.sum()
|
|
res = cfunc(n, pvals)
|
|
self._check_sample(n, pvals, res)
|
|
|
|
def test_multinomial_3_int(self):
|
|
"""
|
|
Test multinomial(n, pvals, size: int)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_multinomial3)
|
|
n, pvals = 1000, self.pvals
|
|
k = 10
|
|
res = cfunc(n, pvals, k)
|
|
self.assertEqual(res.shape[0], k)
|
|
for sample in res:
|
|
self._check_sample(n, pvals, sample)
|
|
|
|
def test_multinomial_3_tuple(self):
|
|
"""
|
|
Test multinomial(n, pvals, size: tuple)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_multinomial3)
|
|
n, pvals = 1000, self.pvals
|
|
k = (3, 4)
|
|
res = cfunc(n, pvals, k)
|
|
self.assertEqual(res.shape[:-1], k)
|
|
for sample in res.reshape((-1, res.shape[-1])):
|
|
self._check_sample(n, pvals, sample)
|
|
|
|
|
|
class TestRandomDirichlet(BaseTest):
|
|
alpha = np.array([1, 1, 1, 2], dtype=np.float64)
|
|
|
|
def _check_sample(self, alpha, size, sample):
|
|
|
|
"""Check output structure"""
|
|
self.assertIsInstance(sample, np.ndarray)
|
|
self.assertEqual(sample.dtype, np.float64)
|
|
if size is None:
|
|
self.assertEqual(sample.size, len(alpha))
|
|
elif type(size) is int:
|
|
self.assertEqual(sample.shape, (size, len(alpha)))
|
|
else:
|
|
self.assertEqual(sample.shape, size + (len(alpha),))
|
|
|
|
"""Check statistical properties"""
|
|
for val in np.nditer(sample):
|
|
self.assertGreaterEqual(val, 0)
|
|
self.assertLessEqual(val, 1)
|
|
if size is None:
|
|
self.assertAlmostEqual(sample.sum(), 1, places=5)
|
|
else:
|
|
for totals in np.nditer(sample.sum(axis=-1)):
|
|
self.assertAlmostEqual(totals, 1, places=5)
|
|
|
|
def test_dirichlet_default(self):
|
|
"""
|
|
Test dirichlet(alpha, size=None)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_dirichlet_default)
|
|
alphas = (
|
|
self.alpha,
|
|
tuple(self.alpha),
|
|
np.array([1, 1, 10000, 1], dtype=np.float64),
|
|
np.array([1, 1, 1.5, 1], dtype=np.float64),
|
|
)
|
|
for alpha in alphas:
|
|
res = cfunc(alpha)
|
|
self._check_sample(alpha, None, res)
|
|
|
|
def test_dirichlet(self):
|
|
"""
|
|
Test dirichlet(alpha, size=None)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_dirichlet)
|
|
sizes = (None, (10,), (10, 10))
|
|
alphas = (
|
|
self.alpha,
|
|
tuple(self.alpha),
|
|
np.array([1, 1, 10000, 1], dtype=np.float64),
|
|
np.array([1, 1, 1.5, 1], dtype=np.float64),
|
|
)
|
|
|
|
for alpha, size in itertools.product(alphas, sizes):
|
|
res = cfunc(alpha, size)
|
|
self._check_sample(alpha, size, res)
|
|
|
|
def test_dirichlet_exceptions(self):
|
|
cfunc = jit(nopython=True)(numpy_dirichlet)
|
|
alpha = tuple((0, 1, 1))
|
|
with self.assertRaises(ValueError) as raises:
|
|
cfunc(alpha, 1)
|
|
self.assertIn("dirichlet: alpha must be > 0.0", str(raises.exception))
|
|
|
|
alpha = self.alpha
|
|
sizes = (True, 3j, 1.5, (1.5, 1), (3j, 1), (3j, 3j), (np.int8(3), np.int64(7)))
|
|
for size in sizes:
|
|
with self.assertRaises(TypingError) as raises:
|
|
cfunc(alpha, size)
|
|
self.assertIn(
|
|
"np.random.dirichlet(): size should be int or "
|
|
"tuple of ints or None, got",
|
|
str(raises.exception),
|
|
)
|
|
|
|
class TestRandomNoncentralChiSquare(BaseTest):
|
|
|
|
def _check_sample(self, size, sample):
|
|
|
|
# Check output structure
|
|
if size is not None:
|
|
self.assertIsInstance(sample, np.ndarray)
|
|
self.assertEqual(sample.dtype, np.float64)
|
|
|
|
if isinstance(size, int):
|
|
self.assertEqual(sample.shape, (size,))
|
|
else:
|
|
self.assertEqual(sample.shape, size)
|
|
else:
|
|
self.assertIsInstance(sample, float)
|
|
|
|
# Check statistical properties
|
|
for val in np.nditer(sample):
|
|
self.assertGreaterEqual(val, 0)
|
|
|
|
def test_noncentral_chisquare_default(self):
|
|
"""
|
|
Test noncentral_chisquare(df, nonc, size=None)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_noncentral_chisquare_default)
|
|
inputs = (
|
|
(0.5, 1), # test branch when df < 1
|
|
(1, 5),
|
|
(5, 1),
|
|
(100000, 1),
|
|
(1, 10000),
|
|
)
|
|
for df, nonc in inputs:
|
|
res = cfunc(df, nonc)
|
|
self._check_sample(None, res)
|
|
res = cfunc(df, np.nan) # test branch when nonc is nan
|
|
self.assertTrue(np.isnan(res))
|
|
|
|
|
|
def test_noncentral_chisquare(self):
|
|
"""
|
|
Test noncentral_chisquare(df, nonc, size)
|
|
"""
|
|
cfunc = jit(nopython=True)(numpy_noncentral_chisquare)
|
|
sizes = (None, 10, (10,), (10, 10))
|
|
inputs = (
|
|
(0.5, 1),
|
|
(1, 5),
|
|
(5, 1),
|
|
(100000, 1),
|
|
(1, 10000),
|
|
)
|
|
|
|
for (df, nonc), size in itertools.product(inputs, sizes):
|
|
res = cfunc(df, nonc, size)
|
|
self._check_sample(size, res)
|
|
res = cfunc(df, np.nan, size) # test branch when nonc is nan
|
|
self.assertTrue(np.isnan(res).all())
|
|
|
|
def test_noncentral_chisquare_exceptions(self):
|
|
cfunc = jit(nopython=True)(numpy_noncentral_chisquare)
|
|
df, nonc = 0, 1
|
|
with self.assertRaises(ValueError) as raises:
|
|
cfunc(df, nonc, 1)
|
|
self.assertIn("df <= 0", str(raises.exception))
|
|
|
|
df, nonc = 1, -1
|
|
with self.assertRaises(ValueError) as raises:
|
|
cfunc(df, nonc, 1)
|
|
self.assertIn("nonc < 0", str(raises.exception))
|
|
|
|
df, nonc = 1, 1
|
|
sizes = (True, 3j, 1.5, (1.5, 1), (3j, 1), (3j, 3j), (np.int8(3), np.int64(7)))
|
|
for size in sizes:
|
|
with self.assertRaises(TypingError) as raises:
|
|
cfunc(df, nonc, size)
|
|
self.assertIn(
|
|
"np.random.noncentral_chisquare(): size should be int or "
|
|
"tuple of ints or None, got",
|
|
str(raises.exception),
|
|
)
|
|
|
|
@jit(nopython=True, nogil=True)
|
|
def py_extract_randomness(seed, out):
|
|
if seed != 0:
|
|
random.seed(seed)
|
|
for i in range(out.size):
|
|
out[i] = random.getrandbits(32)
|
|
|
|
_randint_limit = 1 << 32
|
|
|
|
@jit(nopython=True, nogil=True)
|
|
def np_extract_randomness(seed, out):
|
|
if seed != 0:
|
|
np.random.seed(seed)
|
|
s = 0
|
|
for i in range(out.size):
|
|
out[i] = np.random.randint(_randint_limit)
|
|
|
|
|
|
|
|
class ConcurrencyBaseTest(TestCase):
|
|
|
|
# Enough iterations for:
|
|
# 1. Mersenne-Twister state shuffles to occur (once every 624)
|
|
# 2. Race conditions to be plausible
|
|
# 3. Nice statistical properties to emerge
|
|
_extract_iterations = 100000
|
|
|
|
def setUp(self):
|
|
# Warm up, to avoid compiling in the threads
|
|
args = (42, self._get_output(1))
|
|
py_extract_randomness(*args)
|
|
np_extract_randomness(*args)
|
|
|
|
def _get_output(self, size):
|
|
return np.zeros(size, dtype=np.uint32)
|
|
|
|
def check_output(self, out):
|
|
"""
|
|
Check statistical properties of output.
|
|
"""
|
|
# Output should follow a uniform distribution in [0, 1<<32)
|
|
expected_avg = 1 << 31
|
|
expected_std = (1 << 32) / np.sqrt(12)
|
|
rtol = 0.05 # given enough iterations
|
|
np.testing.assert_allclose(out.mean(), expected_avg, rtol=rtol)
|
|
np.testing.assert_allclose(out.std(), expected_std, rtol=rtol)
|
|
|
|
def check_several_outputs(self, results, same_expected):
|
|
# Outputs should have the expected statistical properties
|
|
# (an uninitialized PRNG or a PRNG whose internal state was
|
|
# corrupted by a race condition could produce bogus randomness)
|
|
for out in results:
|
|
self.check_output(out)
|
|
|
|
# Check all threads gave either the same sequence or
|
|
# distinct sequences
|
|
if same_expected:
|
|
expected_distinct = 1
|
|
else:
|
|
expected_distinct = len(results)
|
|
|
|
heads = {tuple(out[:5]) for out in results}
|
|
tails = {tuple(out[-5:]) for out in results}
|
|
sums = {out.sum() for out in results}
|
|
self.assertEqual(len(heads), expected_distinct, heads)
|
|
self.assertEqual(len(tails), expected_distinct, tails)
|
|
self.assertEqual(len(sums), expected_distinct, sums)
|
|
|
|
|
|
class TestThreads(ConcurrencyBaseTest):
|
|
"""
|
|
Check the PRNG behaves well with threads.
|
|
"""
|
|
|
|
def extract_in_threads(self, nthreads, extract_randomness, seed):
|
|
"""
|
|
Run *nthreads* threads extracting randomness with the given *seed*
|
|
(no seeding if 0).
|
|
"""
|
|
results = [self._get_output(self._extract_iterations)
|
|
for i in range(nthreads + 1)]
|
|
|
|
def target(i):
|
|
# The PRNG will be seeded in thread
|
|
extract_randomness(seed=seed, out=results[i])
|
|
|
|
threads = [threading.Thread(target=target, args=(i,))
|
|
for i in range(nthreads)]
|
|
|
|
for th in threads:
|
|
th.start()
|
|
# Exercise main thread as well
|
|
target(nthreads)
|
|
for th in threads:
|
|
th.join()
|
|
|
|
return results
|
|
|
|
def check_thread_safety(self, extract_randomness):
|
|
"""
|
|
When initializing the PRNG the same way, each thread
|
|
should produce the same sequence of random numbers,
|
|
using independent states, regardless of parallel
|
|
execution.
|
|
"""
|
|
# Note the seed value doesn't matter, as long as it's
|
|
# the same for all threads
|
|
results = self.extract_in_threads(15, extract_randomness, seed=42)
|
|
|
|
# All threads gave the same sequence
|
|
self.check_several_outputs(results, same_expected=True)
|
|
|
|
def check_implicit_initialization(self, extract_randomness):
|
|
"""
|
|
The PRNG in new threads should be implicitly initialized with
|
|
system entropy, if seed() wasn't called.
|
|
"""
|
|
results = self.extract_in_threads(4, extract_randomness, seed=0)
|
|
|
|
# All threads gave a different, valid random sequence
|
|
self.check_several_outputs(results, same_expected=False)
|
|
|
|
def test_py_thread_safety(self):
|
|
self.check_thread_safety(py_extract_randomness)
|
|
|
|
def test_np_thread_safety(self):
|
|
self.check_thread_safety(np_extract_randomness)
|
|
|
|
def test_py_implicit_initialization(self):
|
|
self.check_implicit_initialization(py_extract_randomness)
|
|
|
|
def test_np_implicit_initialization(self):
|
|
self.check_implicit_initialization(np_extract_randomness)
|
|
|
|
|
|
@unittest.skipIf(os.name == 'nt', "Windows is not affected by fork() issues")
|
|
class TestProcesses(ConcurrencyBaseTest):
|
|
"""
|
|
Check the PRNG behaves well in child processes.
|
|
"""
|
|
|
|
# Avoid nested multiprocessing AssertionError
|
|
# ("daemonic processes are not allowed to have children")
|
|
_numba_parallel_test_ = False
|
|
|
|
|
|
def extract_in_processes(self, nprocs, extract_randomness):
|
|
"""
|
|
Run *nprocs* processes extracting randomness
|
|
without explicit seeding.
|
|
"""
|
|
q = multiprocessing.Queue()
|
|
results = []
|
|
|
|
def target_inner():
|
|
out = self._get_output(self._extract_iterations)
|
|
extract_randomness(seed=0, out=out)
|
|
return out
|
|
|
|
def target():
|
|
try:
|
|
out = target_inner()
|
|
q.put(out)
|
|
except Exception as e:
|
|
# Ensure an exception in a child gets reported
|
|
# in the parent.
|
|
q.put(e)
|
|
raise
|
|
|
|
if hasattr(multiprocessing, 'get_context'):
|
|
# The test works only in fork context.
|
|
mpc = multiprocessing.get_context('fork')
|
|
else:
|
|
mpc = multiprocessing
|
|
procs = [mpc.Process(target=target)
|
|
for i in range(nprocs)]
|
|
for p in procs:
|
|
p.start()
|
|
# Need to dequeue before joining, otherwise the large size of the
|
|
# enqueued objects will lead to deadlock.
|
|
for i in range(nprocs):
|
|
results.append(q.get(timeout=5))
|
|
for p in procs:
|
|
p.join()
|
|
|
|
# Exercise parent process as well; this will detect if the
|
|
# same state was reused for one of the children.
|
|
results.append(target_inner())
|
|
for res in results:
|
|
if isinstance(res, Exception):
|
|
self.fail("Exception in child: %s" % (res,))
|
|
|
|
return results
|
|
|
|
def check_implicit_initialization(self, extract_randomness):
|
|
"""
|
|
The PRNG in new processes should be implicitly initialized
|
|
with system entropy, to avoid reproducing the same sequences.
|
|
"""
|
|
results = self.extract_in_processes(2, extract_randomness)
|
|
|
|
# All processes gave a different, valid random sequence
|
|
self.check_several_outputs(results, same_expected=False)
|
|
|
|
def test_py_implicit_initialization(self):
|
|
self.check_implicit_initialization(py_extract_randomness)
|
|
|
|
def test_np_implicit_initialization(self):
|
|
self.check_implicit_initialization(np_extract_randomness)
|
|
|
|
|
|
class TestNumPyRandomAPI(TestCase):
|
|
|
|
def test_call_by_name(self):
|
|
# Checks that the NumPy impls in Numba can be used via call-by-name
|
|
# args, see issue numba#9053.
|
|
#
|
|
# Checking call-by-name has to be done somewhat manually as the NumPy
|
|
# numpy.random.* functions do not have signatures, see numpy#8734.
|
|
|
|
# Herein, it doesn't matter what the values are, the names and types
|
|
# just have to make sense.
|
|
data = {"np.random.beta": {'a': 1., 'b': 2., 'size': 3},
|
|
"np.random.binomial": {'n': 1, 'p': 0.3, 'size': 3},
|
|
"np.random.chisquare": {'df': 2., 'size': 3},
|
|
"np.random.choice": {'a': 2, 'size': 3},
|
|
"np.random.dirichlet": {'alpha': (2,), 'size': 3},
|
|
"np.random.exponential": {'scale': 1., 'size': 3},
|
|
"np.random.f": {'dfnum': 1., 'dfden': 2., 'size': 3},
|
|
"np.random.gamma": {'shape': 2, 'scale': 2.0, 'size': 3},
|
|
"np.random.geometric": {'p': 1., 'size': 3},
|
|
"np.random.gumbel": {'loc': 0., 'scale': 1., 'size': 3},
|
|
"np.random.hypergeometric": {'ngood': 1, 'nbad': 1,
|
|
'nsample': 1, 'size': 3},
|
|
"np.random.laplace": {'loc': 0., 'scale': 1., 'size': 3},
|
|
"np.random.logistic": {'loc': 0., 'scale': 1., 'size': 3},
|
|
"np.random.lognormal": {'mean': 0., 'sigma': 1., 'size': 3},
|
|
"np.random.logseries": {'p': 0.5, 'size': 3},
|
|
"np.random.multinomial": {'n': 1, 'pvals': (1,), 'size': 3},
|
|
"np.random.negative_binomial": {'n': 1, 'p': 0.5},
|
|
"np.random.noncentral_chisquare": {'df': 1., 'nonc': 1.,
|
|
'size': 3},
|
|
"np.random.normal": {'loc': 0., 'scale': 1., 'size': 3},
|
|
"np.random.pareto": {'a': 2., 'size': 3},
|
|
# NOTE: The NumPy impl of permutation "takes no keyword
|
|
# arguments".
|
|
# "np.random.permutation": {'x': (1, 2, 3)},
|
|
"np.random.poisson": {'lam': 1., 'size': 3},
|
|
"np.random.power": {'a': 2., 'size': 3},
|
|
# NOTE: The NumPy impl of rand essentially takes *args so kwargs
|
|
# are unsupported.
|
|
# "np.random.rand": {'d0': 1, 'd1': 2, ...}}
|
|
"np.random.randint": {'low': 1, 'high': 2, 'size': 3},
|
|
# NOTE: The NumPy impl of randn essentially takes *args so
|
|
# kwargs are unsupported.
|
|
# "np.random.randn": {'d0': 1, 'd1': 2, ...}}
|
|
"np.random.random": {'size': 3},
|
|
"np.random.random_sample": {'size': 3},
|
|
"np.random.ranf": {'size': 3},
|
|
"np.random.rayleigh": {'scale': 1., 'size': 3},
|
|
"np.random.sample": {'size': 3},
|
|
"np.random.seed": {'seed': 4},
|
|
# NOTE: The NumPy impl of shuffle "takes no keyword arguments".
|
|
# "np.random.shuffle"
|
|
"np.random.standard_cauchy": {'size': 3},
|
|
"np.random.standard_exponential": {'size': 3},
|
|
"np.random.standard_gamma": {'shape': 2., 'size': 3},
|
|
"np.random.standard_normal": {'size': 3},
|
|
"np.random.standard_t": {'df': 2., 'size': 3},
|
|
"np.random.triangular": {'left': 1., 'mode': 2., 'right': 3.,
|
|
'size': 3},
|
|
"np.random.uniform": {'low': 1., 'high': 2., 'size': 3},
|
|
"np.random.vonmises": {'mu': 1., 'kappa': 2., 'size': 3},
|
|
"np.random.wald": {'mean': 1., 'scale': 2., 'size': 3},
|
|
"np.random.weibull": {'a': 1., 'size': 3},
|
|
"np.random.zipf": {'a': 2., 'size': 3},}
|
|
|
|
for fn, args in data.items():
|
|
argstr = ', '.join([f'{k}={v}' for k, v in args.items()])
|
|
template = dedent(f"""
|
|
def foo():
|
|
return {fn}({argstr})
|
|
""")
|
|
l = {}
|
|
exec(template, {'np': np}, l)
|
|
# The answer doesn't matter, these are tested in the tests above,
|
|
# the purpose of this test is to ensure that the code compiles with
|
|
# the args presented via name, i.e. the overloads are defined
|
|
# correctly with respect to the public API of the function.
|
|
func = l['foo']
|
|
func()
|
|
njit(func).compile(())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|