ai-content-maker/.venv/Lib/site-packages/pandas/_libs/tslibs/fields.pyx

775 lines
21 KiB
Cython

"""
Functions for accessing attributes of Timestamp/datetime64/datetime-like
objects and arrays
"""
from locale import LC_TIME
from _strptime import LocaleTime
cimport cython
from cython cimport Py_ssize_t
import numpy as np
cimport numpy as cnp
from numpy cimport (
int8_t,
int32_t,
int64_t,
ndarray,
uint32_t,
)
cnp.import_array()
from pandas._config.localization import set_locale
from pandas._libs.tslibs.ccalendar import (
DAYS_FULL,
MONTHS_FULL,
)
from pandas._libs.tslibs.ccalendar cimport (
dayofweek,
get_day_of_year,
get_days_in_month,
get_firstbday,
get_iso_calendar,
get_lastbday,
get_week_of_year,
is_leapyear,
iso_calendar_t,
month_offset,
)
from pandas._libs.tslibs.nattype cimport NPY_NAT
from pandas._libs.tslibs.np_datetime cimport (
NPY_DATETIMEUNIT,
NPY_FR_ns,
get_unit_from_dtype,
npy_datetimestruct,
pandas_datetime_to_datetimestruct,
pandas_timedelta_to_timedeltastruct,
pandas_timedeltastruct,
)
@cython.wraparound(False)
@cython.boundscheck(False)
def build_field_sarray(const int64_t[:] dtindex, NPY_DATETIMEUNIT reso):
"""
Datetime as int64 representation to a structured array of fields
"""
cdef:
Py_ssize_t i, count = len(dtindex)
npy_datetimestruct dts
ndarray[int32_t] years, months, days, hours, minutes, seconds, mus
sa_dtype = [
("Y", "i4"), # year
("M", "i4"), # month
("D", "i4"), # day
("h", "i4"), # hour
("m", "i4"), # min
("s", "i4"), # second
("u", "i4"), # microsecond
]
out = np.empty(count, dtype=sa_dtype)
years = out['Y']
months = out['M']
days = out['D']
hours = out['h']
minutes = out['m']
seconds = out['s']
mus = out['u']
for i in range(count):
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
years[i] = dts.year
months[i] = dts.month
days[i] = dts.day
hours[i] = dts.hour
minutes[i] = dts.min
seconds[i] = dts.sec
mus[i] = dts.us
return out
def month_position_check(fields, weekdays) -> str | None:
cdef:
int32_t daysinmonth, y, m, d
bint calendar_end = True
bint business_end = True
bint calendar_start = True
bint business_start = True
bint cal
int32_t[:] years = fields["Y"]
int32_t[:] months = fields["M"]
int32_t[:] days = fields["D"]
for y, m, d, wd in zip(years, months, days, weekdays):
if calendar_start:
calendar_start &= d == 1
if business_start:
business_start &= d == 1 or (d <= 3 and wd == 0)
if calendar_end or business_end:
daysinmonth = get_days_in_month(y, m)
cal = d == daysinmonth
if calendar_end:
calendar_end &= cal
if business_end:
business_end &= cal or (daysinmonth - d < 3 and wd == 4)
elif not calendar_start and not business_start:
break
if calendar_end:
return "ce"
elif business_end:
return "be"
elif calendar_start:
return "cs"
elif business_start:
return "bs"
else:
return None
@cython.wraparound(False)
@cython.boundscheck(False)
def get_date_name_field(
const int64_t[:] dtindex,
str field,
object locale=None,
NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
"""
Given a int64-based datetime index, return array of strings of date
name based on requested field (e.g. day_name)
"""
cdef:
Py_ssize_t i, count = dtindex.shape[0]
ndarray[object] out, names
npy_datetimestruct dts
int dow
out = np.empty(count, dtype=object)
if field == 'day_name':
if locale is None:
names = np.array(DAYS_FULL, dtype=np.object_)
else:
names = np.array(_get_locale_names('f_weekday', locale),
dtype=np.object_)
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = np.nan
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
dow = dayofweek(dts.year, dts.month, dts.day)
out[i] = names[dow].capitalize()
elif field == 'month_name':
if locale is None:
names = np.array(MONTHS_FULL, dtype=np.object_)
else:
names = np.array(_get_locale_names('f_month', locale),
dtype=np.object_)
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = np.nan
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = names[dts.month].capitalize()
else:
raise ValueError(f"Field {field} not supported")
return out
cdef inline bint _is_on_month(int month, int compare_month, int modby) nogil:
"""
Analogous to DateOffset.is_on_offset checking for the month part of a date.
"""
if modby == 1:
return True
elif modby == 3:
return (month - compare_month) % 3 == 0
else:
return month == compare_month
@cython.wraparound(False)
@cython.boundscheck(False)
def get_start_end_field(
const int64_t[:] dtindex,
str field,
str freqstr=None,
int month_kw=12,
NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
"""
Given an int64-based datetime index return array of indicators
of whether timestamps are at the start/end of the month/quarter/year
(defined by frequency).
Parameters
----------
dtindex : ndarray[int64]
field : str
frestr : str or None, default None
month_kw : int, default 12
reso : NPY_DATETIMEUNIT, default NPY_FR_ns
Returns
-------
ndarray[bool]
"""
cdef:
Py_ssize_t i
int count = dtindex.shape[0]
bint is_business = 0
int end_month = 12
int start_month = 1
ndarray[int8_t] out
npy_datetimestruct dts
int compare_month, modby
out = np.zeros(count, dtype='int8')
if freqstr:
if freqstr == 'C':
raise ValueError(f"Custom business days is not supported by {field}")
is_business = freqstr[0] == 'B'
# YearBegin(), BYearBegin() use month = starting month of year.
# QuarterBegin(), BQuarterBegin() use startingMonth = starting
# month of year. Other offsets use month, startingMonth as ending
# month of year.
if (freqstr[0:2] in ['MS', 'QS', 'AS']) or (
freqstr[1:3] in ['MS', 'QS', 'AS']):
end_month = 12 if month_kw == 1 else month_kw - 1
start_month = month_kw
else:
end_month = month_kw
start_month = (end_month % 12) + 1
else:
end_month = 12
start_month = 1
compare_month = start_month if "start" in field else end_month
if "month" in field:
modby = 1
elif "quarter" in field:
modby = 3
else:
modby = 12
if field in ["is_month_start", "is_quarter_start", "is_year_start"]:
if is_business:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = 0
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
if _is_on_month(dts.month, compare_month, modby) and (
dts.day == get_firstbday(dts.year, dts.month)):
out[i] = 1
else:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = 0
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
if _is_on_month(dts.month, compare_month, modby) and dts.day == 1:
out[i] = 1
elif field in ["is_month_end", "is_quarter_end", "is_year_end"]:
if is_business:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = 0
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
if _is_on_month(dts.month, compare_month, modby) and (
dts.day == get_lastbday(dts.year, dts.month)):
out[i] = 1
else:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = 0
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
if _is_on_month(dts.month, compare_month, modby) and (
dts.day == get_days_in_month(dts.year, dts.month)):
out[i] = 1
else:
raise ValueError(f"Field {field} not supported")
return out.view(bool)
@cython.wraparound(False)
@cython.boundscheck(False)
def get_date_field(const int64_t[:] dtindex, str field, NPY_DATETIMEUNIT reso=NPY_FR_ns):
"""
Given a int64-based datetime index, extract the year, month, etc.,
field and return an array of these values.
"""
cdef:
Py_ssize_t i, count = len(dtindex)
ndarray[int32_t] out
npy_datetimestruct dts
out = np.empty(count, dtype='i4')
if field == 'Y':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.year
return out
elif field == 'M':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.month
return out
elif field == 'D':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.day
return out
elif field == 'h':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.hour
# TODO: can we de-dup with period.pyx <accessor>s?
return out
elif field == 'm':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.min
return out
elif field == 's':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.sec
return out
elif field == 'us':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.us
return out
elif field == 'ns':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.ps // 1000
return out
elif field == 'doy':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = get_day_of_year(dts.year, dts.month, dts.day)
return out
elif field == 'dow':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dayofweek(dts.year, dts.month, dts.day)
return out
elif field == 'woy':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = get_week_of_year(dts.year, dts.month, dts.day)
return out
elif field == 'q':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = dts.month
out[i] = ((out[i] - 1) // 3) + 1
return out
elif field == 'dim':
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
out[i] = get_days_in_month(dts.year, dts.month)
return out
elif field == 'is_leap_year':
return isleapyear_arr(get_date_field(dtindex, 'Y', reso=reso))
raise ValueError(f"Field {field} not supported")
@cython.wraparound(False)
@cython.boundscheck(False)
def get_timedelta_field(
const int64_t[:] tdindex,
str field,
NPY_DATETIMEUNIT reso=NPY_FR_ns,
):
"""
Given a int64-based timedelta index, extract the days, hrs, sec.,
field and return an array of these values.
"""
cdef:
Py_ssize_t i, count = len(tdindex)
ndarray[int32_t] out
pandas_timedeltastruct tds
out = np.empty(count, dtype='i4')
if field == 'days':
with nogil:
for i in range(count):
if tdindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
out[i] = tds.days
return out
elif field == 'seconds':
with nogil:
for i in range(count):
if tdindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
out[i] = tds.seconds
return out
elif field == 'microseconds':
with nogil:
for i in range(count):
if tdindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
out[i] = tds.microseconds
return out
elif field == 'nanoseconds':
with nogil:
for i in range(count):
if tdindex[i] == NPY_NAT:
out[i] = -1
continue
pandas_timedelta_to_timedeltastruct(tdindex[i], reso, &tds)
out[i] = tds.nanoseconds
return out
raise ValueError(f"Field {field} not supported")
cpdef isleapyear_arr(ndarray years):
"""vectorized version of isleapyear; NaT evaluates as False"""
cdef:
ndarray[int8_t] out
out = np.zeros(len(years), dtype='int8')
out[np.logical_or(years % 400 == 0,
np.logical_and(years % 4 == 0,
years % 100 > 0))] = 1
return out.view(bool)
@cython.wraparound(False)
@cython.boundscheck(False)
def build_isocalendar_sarray(const int64_t[:] dtindex, NPY_DATETIMEUNIT reso):
"""
Given a int64-based datetime array, return the ISO 8601 year, week, and day
as a structured array.
"""
cdef:
Py_ssize_t i, count = len(dtindex)
npy_datetimestruct dts
ndarray[uint32_t] iso_years, iso_weeks, days
iso_calendar_t ret_val
sa_dtype = [
("year", "u4"),
("week", "u4"),
("day", "u4"),
]
out = np.empty(count, dtype=sa_dtype)
iso_years = out["year"]
iso_weeks = out["week"]
days = out["day"]
with nogil:
for i in range(count):
if dtindex[i] == NPY_NAT:
ret_val = 0, 0, 0
else:
pandas_datetime_to_datetimestruct(dtindex[i], reso, &dts)
ret_val = get_iso_calendar(dts.year, dts.month, dts.day)
iso_years[i] = ret_val[0]
iso_weeks[i] = ret_val[1]
days[i] = ret_val[2]
return out
def _get_locale_names(name_type: str, locale: object = None):
"""
Returns an array of localized day or month names.
Parameters
----------
name_type : str
Attribute of LocaleTime() in which to return localized names.
locale : str
Returns
-------
list of locale names
"""
with set_locale(locale, LC_TIME):
return getattr(LocaleTime(), name_type)
# ---------------------------------------------------------------------
# Rounding
class RoundTo:
"""
enumeration defining the available rounding modes
Attributes
----------
MINUS_INFTY
round towards -∞, or floor [2]_
PLUS_INFTY
round towards +∞, or ceil [3]_
NEAREST_HALF_EVEN
round to nearest, tie-break half to even [6]_
NEAREST_HALF_MINUS_INFTY
round to nearest, tie-break half to -∞ [5]_
NEAREST_HALF_PLUS_INFTY
round to nearest, tie-break half to +∞ [4]_
References
----------
.. [1] "Rounding - Wikipedia"
https://en.wikipedia.org/wiki/Rounding
.. [2] "Rounding down"
https://en.wikipedia.org/wiki/Rounding#Rounding_down
.. [3] "Rounding up"
https://en.wikipedia.org/wiki/Rounding#Rounding_up
.. [4] "Round half up"
https://en.wikipedia.org/wiki/Rounding#Round_half_up
.. [5] "Round half down"
https://en.wikipedia.org/wiki/Rounding#Round_half_down
.. [6] "Round half to even"
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
"""
@property
def MINUS_INFTY(self) -> int:
return 0
@property
def PLUS_INFTY(self) -> int:
return 1
@property
def NEAREST_HALF_EVEN(self) -> int:
return 2
@property
def NEAREST_HALF_PLUS_INFTY(self) -> int:
return 3
@property
def NEAREST_HALF_MINUS_INFTY(self) -> int:
return 4
cdef inline ndarray[int64_t] _floor_int64(const int64_t[:] values, int64_t unit):
cdef:
Py_ssize_t i, n = len(values)
ndarray[int64_t] result = np.empty(n, dtype="i8")
int64_t res, value
with cython.overflowcheck(True):
for i in range(n):
value = values[i]
if value == NPY_NAT:
res = NPY_NAT
else:
res = value - value % unit
result[i] = res
return result
cdef inline ndarray[int64_t] _ceil_int64(const int64_t[:] values, int64_t unit):
cdef:
Py_ssize_t i, n = len(values)
ndarray[int64_t] result = np.empty(n, dtype="i8")
int64_t res, value
with cython.overflowcheck(True):
for i in range(n):
value = values[i]
if value == NPY_NAT:
res = NPY_NAT
else:
remainder = value % unit
if remainder == 0:
res = value
else:
res = value + (unit - remainder)
result[i] = res
return result
cdef inline ndarray[int64_t] _rounddown_int64(values, int64_t unit):
return _ceil_int64(values - unit // 2, unit)
cdef inline ndarray[int64_t] _roundup_int64(values, int64_t unit):
return _floor_int64(values + unit // 2, unit)
def round_nsint64(values: np.ndarray, mode: RoundTo, nanos: int) -> np.ndarray:
"""
Applies rounding mode at given frequency
Parameters
----------
values : np.ndarray[int64_t]`
mode : instance of `RoundTo` enumeration
nanos : np.int64
Freq to round to, expressed in nanoseconds
Returns
-------
np.ndarray[int64_t]
"""
cdef:
int64_t unit = nanos
if mode == RoundTo.MINUS_INFTY:
return _floor_int64(values, unit)
elif mode == RoundTo.PLUS_INFTY:
return _ceil_int64(values, unit)
elif mode == RoundTo.NEAREST_HALF_MINUS_INFTY:
return _rounddown_int64(values, unit)
elif mode == RoundTo.NEAREST_HALF_PLUS_INFTY:
return _roundup_int64(values, unit)
elif mode == RoundTo.NEAREST_HALF_EVEN:
# for odd unit there is no need of a tie break
if unit % 2:
return _rounddown_int64(values, unit)
quotient, remainder = np.divmod(values, unit)
mask = np.logical_or(
remainder > (unit // 2),
np.logical_and(remainder == (unit // 2), quotient % 2)
)
quotient[mask] += 1
return quotient * unit
# if/elif above should catch all rounding modes defined in enum 'RoundTo':
# if flow of control arrives here, it is a bug
raise ValueError("round_nsint64 called with an unrecognized rounding mode")