ai-content-maker/.venv/Lib/site-packages/pandas/tests/arrays/test_datetimelike.py

1460 lines
48 KiB
Python

from __future__ import annotations
import re
import numpy as np
import pytest
from pandas._libs import (
NaT,
OutOfBoundsDatetime,
Timestamp,
)
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DatetimeIndex,
Period,
PeriodIndex,
TimedeltaIndex,
)
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
PandasArray,
PeriodArray,
TimedeltaArray,
)
from pandas.core.arrays.datetimes import _sequence_to_dt64ns
from pandas.core.arrays.timedeltas import sequence_to_td64ns
# TODO: more freq variants
@pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
def freqstr(request):
"""Fixture returning parametrized frequency in string format."""
return request.param
@pytest.fixture
def period_index(freqstr):
"""
A fixture to provide PeriodIndex objects with different frequencies.
Most PeriodArray behavior is already tested in PeriodIndex tests,
so here we just test that the PeriodArray behavior matches
the PeriodIndex behavior.
"""
# TODO: non-monotone indexes; NaTs, different start dates
pi = pd.period_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
return pi
@pytest.fixture
def datetime_index(freqstr):
"""
A fixture to provide DatetimeIndex objects with different frequencies.
Most DatetimeArray behavior is already tested in DatetimeIndex tests,
so here we just test that the DatetimeArray behavior matches
the DatetimeIndex behavior.
"""
# TODO: non-monotone indexes; NaTs, different start dates, timezones
dti = pd.date_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
return dti
@pytest.fixture
def timedelta_index():
"""
A fixture to provide TimedeltaIndex objects with different frequencies.
Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
so here we just test that the TimedeltaArray behavior matches
the TimedeltaIndex behavior.
"""
# TODO: flesh this out
return TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
class SharedTests:
index_cls: type[DatetimeIndex | PeriodIndex | TimedeltaIndex]
@pytest.fixture
def arr1d(self):
"""Fixture returning DatetimeArray with daily frequency."""
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
return arr
def test_compare_len1_raises(self, arr1d):
# make sure we raise when comparing with different lengths, specific
# to the case where one has length-1, which numpy would broadcast
arr = arr1d
idx = self.index_cls(arr)
with pytest.raises(ValueError, match="Lengths must match"):
arr == arr[:1]
# test the index classes while we're at it, GH#23078
with pytest.raises(ValueError, match="Lengths must match"):
idx <= idx[[0]]
@pytest.mark.parametrize(
"result",
[
pd.date_range("2020", periods=3),
pd.date_range("2020", periods=3, tz="UTC"),
pd.timedelta_range("0 days", periods=3),
pd.period_range("2020Q1", periods=3, freq="Q"),
],
)
def test_compare_with_Categorical(self, result):
expected = pd.Categorical(result)
assert all(result == expected)
assert not any(result != expected)
@pytest.mark.parametrize("reverse", [True, False])
@pytest.mark.parametrize("as_index", [True, False])
def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered):
other = pd.Categorical(arr1d, ordered=ordered)
if as_index:
other = pd.CategoricalIndex(other)
left, right = arr1d, other
if reverse:
left, right = right, left
ones = np.ones(arr1d.shape, dtype=bool)
zeros = ~ones
result = left == right
tm.assert_numpy_array_equal(result, ones)
result = left != right
tm.assert_numpy_array_equal(result, zeros)
if not reverse and not as_index:
# Otherwise Categorical raises TypeError bc it is not ordered
# TODO: we should probably get the same behavior regardless?
result = left < right
tm.assert_numpy_array_equal(result, zeros)
result = left <= right
tm.assert_numpy_array_equal(result, ones)
result = left > right
tm.assert_numpy_array_equal(result, zeros)
result = left >= right
tm.assert_numpy_array_equal(result, ones)
def test_take(self):
data = np.arange(100, dtype="i8") * 24 * 3600 * 10**9
np.random.shuffle(data)
freq = None if self.array_cls is not PeriodArray else "D"
arr = self.array_cls(data, freq=freq)
idx = self.index_cls._simple_new(arr)
takers = [1, 4, 94]
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
takers = np.array([1, 4, 94])
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
@pytest.mark.parametrize("fill_value", [2, 2.0, Timestamp(2021, 1, 1, 12).time])
def test_take_fill_raises(self, fill_value):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
arr.take([0, 1], allow_fill=True, fill_value=fill_value)
def test_take_fill(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
result = arr.take([-1, 1], allow_fill=True, fill_value=None)
assert result[0] is NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
assert result[0] is NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=NaT)
assert result[0] is NaT
def test_take_fill_str(self, arr1d):
# Cast str fill_value matching other fill_value-taking methods
result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1]))
expected = arr1d[[-1, 1]]
tm.assert_equal(result, expected)
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
arr1d.take([-1, 1], allow_fill=True, fill_value="foo")
def test_concat_same_type(self, arr1d):
arr = arr1d
idx = self.index_cls(arr)
idx = idx.insert(0, NaT)
arr = self.array_cls(idx)
result = arr._concat_same_type([arr[:-1], arr[1:], arr])
arr2 = arr.astype(object)
expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]), None)
tm.assert_index_equal(self.index_cls(result), expected)
def test_unbox_scalar(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
result = arr._unbox_scalar(arr[0])
expected = arr._data.dtype.type
assert isinstance(result, expected)
result = arr._unbox_scalar(NaT)
assert isinstance(result, expected)
msg = f"'value' should be a {self.scalar_type.__name__}."
with pytest.raises(ValueError, match=msg):
arr._unbox_scalar("foo")
def test_check_compatible_with(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
arr._check_compatible_with(arr[0])
arr._check_compatible_with(arr[:1])
arr._check_compatible_with(NaT)
def test_scalar_from_string(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
result = arr._scalar_from_string(str(arr[0]))
assert result == arr[0]
def test_reduce_invalid(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
msg = "does not support reduction 'not a method'"
with pytest.raises(TypeError, match=msg):
arr._reduce("not a method")
@pytest.mark.parametrize("method", ["pad", "backfill"])
def test_fillna_method_doesnt_change_orig(self, method):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
arr[4] = NaT
fill_value = arr[3] if method == "pad" else arr[5]
result = arr.fillna(method=method)
assert result[4] == fill_value
# check that the original was not changed
assert arr[4] is NaT
def test_searchsorted(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
# scalar
result = arr.searchsorted(arr[1])
assert result == 1
result = arr.searchsorted(arr[2], side="right")
assert result == 3
# own-type
result = arr.searchsorted(arr[1:3])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
result = arr.searchsorted(arr[1:3], side="right")
expected = np.array([2, 3], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# GH#29884 match numpy convention on whether NaT goes
# at the end or the beginning
result = arr.searchsorted(NaT)
assert result == 10
@pytest.mark.parametrize("box", [None, "index", "series"])
def test_searchsorted_castable_strings(self, arr1d, box, request, string_storage):
if isinstance(arr1d, DatetimeArray):
tz = arr1d.tz
ts1, ts2 = arr1d[1:3]
if tz is not None and ts1.tz.tzname(ts1) != ts2.tz.tzname(ts2):
# If we have e.g. tzutc(), when we cast to string and parse
# back we get pytz.UTC, and then consider them different timezones
# so incorrectly raise.
mark = pytest.mark.xfail(
raises=TypeError, reason="timezone comparisons inconsistent"
)
request.node.add_marker(mark)
arr = arr1d
if box is None:
pass
elif box == "index":
# Test the equivalent Index.searchsorted method while we're here
arr = self.index_cls(arr)
else:
# Test the equivalent Series.searchsorted method while we're here
arr = pd.Series(arr)
# scalar
result = arr.searchsorted(str(arr[1]))
assert result == 1
result = arr.searchsorted(str(arr[2]), side="right")
assert result == 3
result = arr.searchsorted([str(x) for x in arr[1:3]])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
with pytest.raises(
TypeError,
match=re.escape(
f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
"or array of those. Got 'str' instead."
),
):
arr.searchsorted("foo")
arr_type = "StringArray" if string_storage == "python" else "ArrowStringArray"
with pd.option_context("string_storage", string_storage):
with pytest.raises(
TypeError,
match=re.escape(
f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
f"or array of those. Got '{arr_type}' instead."
),
):
arr.searchsorted([str(arr[1]), "baz"])
def test_getitem_near_implementation_bounds(self):
# We only check tz-naive for DTA bc the bounds are slightly different
# for other tzs
i8vals = np.asarray([NaT.value + n for n in range(1, 5)], dtype="i8")
arr = self.array_cls(i8vals, freq="ns")
arr[0] # should not raise OutOfBoundsDatetime
index = pd.Index(arr)
index[0] # should not raise OutOfBoundsDatetime
ser = pd.Series(arr)
ser[0] # should not raise OutOfBoundsDatetime
def test_getitem_2d(self, arr1d):
# 2d slicing on a 1D array
expected = type(arr1d)(arr1d._data[:, np.newaxis], dtype=arr1d.dtype)
result = arr1d[:, np.newaxis]
tm.assert_equal(result, expected)
# Lookup on a 2D array
arr2d = expected
expected = type(arr2d)(arr2d._data[:3, 0], dtype=arr2d.dtype)
result = arr2d[:3, 0]
tm.assert_equal(result, expected)
# Scalar lookup
result = arr2d[-1, 0]
expected = arr1d[-1]
assert result == expected
def test_iter_2d(self, arr1d):
data2d = arr1d._data[:3, np.newaxis]
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
result = list(arr2d)
assert len(result) == 3
for x in result:
assert isinstance(x, type(arr1d))
assert x.ndim == 1
assert x.dtype == arr1d.dtype
def test_repr_2d(self, arr1d):
data2d = arr1d._data[:3, np.newaxis]
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
result = repr(arr2d)
if isinstance(arr2d, TimedeltaArray):
expected = (
f"<{type(arr2d).__name__}>\n"
"[\n"
f"['{arr1d[0]._repr_base()}'],\n"
f"['{arr1d[1]._repr_base()}'],\n"
f"['{arr1d[2]._repr_base()}']\n"
"]\n"
f"Shape: (3, 1), dtype: {arr1d.dtype}"
)
else:
expected = (
f"<{type(arr2d).__name__}>\n"
"[\n"
f"['{arr1d[0]}'],\n"
f"['{arr1d[1]}'],\n"
f"['{arr1d[2]}']\n"
"]\n"
f"Shape: (3, 1), dtype: {arr1d.dtype}"
)
assert result == expected
def test_setitem(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
arr[0] = arr[1]
expected = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
expected[0] = expected[1]
tm.assert_numpy_array_equal(arr.asi8, expected)
arr[:2] = arr[-2:]
expected[:2] = expected[-2:]
tm.assert_numpy_array_equal(arr.asi8, expected)
@pytest.mark.parametrize(
"box",
[
pd.Index,
pd.Series,
np.array,
list,
PandasArray,
],
)
def test_setitem_object_dtype(self, box, arr1d):
expected = arr1d.copy()[::-1]
if expected.dtype.kind in ["m", "M"]:
expected = expected._with_freq(None)
vals = expected
if box is list:
vals = list(vals)
elif box is np.array:
# if we do np.array(x).astype(object) then dt64 and td64 cast to ints
vals = np.array(vals.astype(object))
elif box is PandasArray:
vals = box(np.asarray(vals, dtype=object))
else:
vals = box(vals).astype(object)
arr1d[:] = vals
tm.assert_equal(arr1d, expected)
def test_setitem_strs(self, arr1d, request):
# Check that we parse strs in both scalar and listlike
if isinstance(arr1d, DatetimeArray):
tz = arr1d.tz
ts1, ts2 = arr1d[-2:]
if tz is not None and ts1.tz.tzname(ts1) != ts2.tz.tzname(ts2):
# If we have e.g. tzutc(), when we cast to string and parse
# back we get pytz.UTC, and then consider them different timezones
# so incorrectly raise.
mark = pytest.mark.xfail(
raises=TypeError, reason="timezone comparisons inconsistent"
)
request.node.add_marker(mark)
# Setting list-like of strs
expected = arr1d.copy()
expected[[0, 1]] = arr1d[-2:]
result = arr1d.copy()
result[:2] = [str(x) for x in arr1d[-2:]]
tm.assert_equal(result, expected)
# Same thing but now for just a scalar str
expected = arr1d.copy()
expected[0] = arr1d[-1]
result = arr1d.copy()
result[0] = str(arr1d[-1])
tm.assert_equal(result, expected)
@pytest.mark.parametrize("as_index", [True, False])
def test_setitem_categorical(self, arr1d, as_index):
expected = arr1d.copy()[::-1]
if not isinstance(expected, PeriodArray):
expected = expected._with_freq(None)
cat = pd.Categorical(arr1d)
if as_index:
cat = pd.CategoricalIndex(cat)
arr1d[:] = cat[::-1]
tm.assert_equal(arr1d, expected)
def test_setitem_raises(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
val = arr[0]
with pytest.raises(IndexError, match="index 12 is out of bounds"):
arr[12] = val
with pytest.raises(TypeError, match="value should be a.* 'object'"):
arr[0] = object()
msg = "cannot set using a list-like indexer with a different length"
with pytest.raises(ValueError, match=msg):
# GH#36339
arr[[]] = [arr[1]]
msg = "cannot set using a slice indexer with a different length than"
with pytest.raises(ValueError, match=msg):
# GH#36339
arr[1:1] = arr[:3]
@pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series])
def test_setitem_numeric_raises(self, arr1d, box):
# We dont case e.g. int64 to our own dtype for setitem
msg = (
f"value should be a '{arr1d._scalar_type.__name__}', "
"'NaT', or array of those. Got"
)
with pytest.raises(TypeError, match=msg):
arr1d[:2] = box([0, 1])
with pytest.raises(TypeError, match=msg):
arr1d[:2] = box([0.0, 1.0])
def test_inplace_arithmetic(self):
# GH#24115 check that iadd and isub are actually in-place
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
expected = arr + pd.Timedelta(days=1)
arr += pd.Timedelta(days=1)
tm.assert_equal(arr, expected)
expected = arr - pd.Timedelta(days=1)
arr -= pd.Timedelta(days=1)
tm.assert_equal(arr, expected)
def test_shift_fill_int_deprecated(self):
# GH#31971
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = self.array_cls(data, freq="D")
msg = "Passing <class 'int'> to shift"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = arr.shift(1, fill_value=1)
expected = arr.copy()
if self.array_cls is PeriodArray:
fill_val = arr._scalar_type._from_ordinal(1, freq=arr.freq)
else:
fill_val = arr._scalar_type(1)
expected[0] = fill_val
expected[1:] = arr[:-1]
tm.assert_equal(result, expected)
def test_median(self, arr1d):
arr = arr1d
if len(arr) % 2 == 0:
# make it easier to define `expected`
arr = arr[:-1]
expected = arr[len(arr) // 2]
result = arr.median()
assert type(result) is type(expected)
assert result == expected
arr[len(arr) // 2] = NaT
if not isinstance(expected, Period):
expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean()
assert arr.median(skipna=False) is NaT
result = arr.median()
assert type(result) is type(expected)
assert result == expected
assert arr[:0].median() is NaT
assert arr[:0].median(skipna=False) is NaT
# 2d Case
arr2 = arr.reshape(-1, 1)
result = arr2.median(axis=None)
assert type(result) is type(expected)
assert result == expected
assert arr2.median(axis=None, skipna=False) is NaT
result = arr2.median(axis=0)
expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype)
tm.assert_equal(result, expected2)
result = arr2.median(axis=0, skipna=False)
expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype)
tm.assert_equal(result, expected2)
result = arr2.median(axis=1)
tm.assert_equal(result, arr)
result = arr2.median(axis=1, skipna=False)
tm.assert_equal(result, arr)
def test_from_integer_array(self):
arr = np.array([1, 2, 3], dtype=np.int64)
expected = self.array_cls(arr, dtype=self.example_dtype)
data = pd.array(arr, dtype="Int64")
result = self.array_cls(data, dtype=self.example_dtype)
tm.assert_extension_array_equal(result, expected)
class TestDatetimeArray(SharedTests):
index_cls = DatetimeIndex
array_cls = DatetimeArray
scalar_type = Timestamp
example_dtype = "M8[ns]"
@pytest.fixture
def arr1d(self, tz_naive_fixture, freqstr):
"""
Fixture returning DatetimeArray with parametrized frequency and
timezones
"""
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz)
dta = dti._data
return dta
def test_round(self, arr1d):
# GH#24064
dti = self.index_cls(arr1d)
result = dti.round(freq="2T")
expected = dti - pd.Timedelta(minutes=1)
expected = expected._with_freq(None)
tm.assert_index_equal(result, expected)
dta = dti._data
result = dta.round(freq="2T")
expected = expected._data._with_freq(None)
tm.assert_datetime_array_equal(result, expected)
def test_array_interface(self, datetime_index):
arr = DatetimeArray(datetime_index)
# default asarray gives the same underlying data (for tz naive)
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying M8[ns] gives the same result as default
result = np.asarray(arr, dtype="datetime64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_object_dtype(self, arr1d):
# GH#23524
arr = arr1d
dti = self.index_cls(arr1d)
expected = np.array(list(dti))
result = np.array(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
# also test the DatetimeIndex method while we're at it
result = np.array(dti, dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_array_tz(self, arr1d):
# GH#23524
arr = arr1d
dti = self.index_cls(arr1d)
expected = dti.asi8.view("M8[ns]")
result = np.array(arr, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
# check that we are not making copies when setting copy=False
result = np.array(arr, dtype="M8[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
def test_array_i8_dtype(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
expected = dti.asi8
result = np.array(arr, dtype="i8")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
# check that we are still making copies when setting copy=False
result = np.array(arr, dtype="i8", copy=False)
assert result.base is not expected.base
assert result.base is None
def test_from_array_keeps_base(self):
# Ensure that DatetimeArray._data.base isn't lost.
arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
dta = DatetimeArray(arr)
assert dta._data is arr
dta = DatetimeArray(arr[:0])
assert dta._data.base is arr
def test_from_dti(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
assert list(dti) == list(arr)
# Check that Index.__new__ knows what to do with DatetimeArray
dti2 = pd.Index(arr)
assert isinstance(dti2, DatetimeIndex)
assert list(dti2) == list(arr)
def test_astype_object(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(dti)
def test_to_perioddelta(self, datetime_index, freqstr):
# GH#23113
dti = datetime_index
arr = DatetimeArray(dti)
msg = "to_perioddelta is deprecated and will be removed"
with tm.assert_produces_warning(FutureWarning, match=msg):
# Deprecation GH#34853
expected = dti.to_perioddelta(freq=freqstr)
with tm.assert_produces_warning(FutureWarning, match=msg):
# stacklevel is chosen to be "correct" for DatetimeIndex, not
# DatetimeArray
result = arr.to_perioddelta(freq=freqstr)
assert isinstance(result, TimedeltaArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
def test_to_period(self, datetime_index, freqstr):
dti = datetime_index
arr = DatetimeArray(dti)
expected = dti.to_period(freq=freqstr)
result = arr.to_period(freq=freqstr)
assert isinstance(result, PeriodArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
def test_to_period_2d(self, arr1d):
arr2d = arr1d.reshape(1, -1)
warn = None if arr1d.tz is None else UserWarning
with tm.assert_produces_warning(warn):
result = arr2d.to_period("D")
expected = arr1d.to_period("D").reshape(1, -1)
tm.assert_period_array_equal(result, expected)
@pytest.mark.parametrize("propname", DatetimeArray._bool_ops)
def test_bool_properties(self, arr1d, propname):
# in this case _bool_ops is just `is_leap_year`
dti = self.index_cls(arr1d)
arr = arr1d
assert dti.freq == arr.freq
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", DatetimeArray._field_ops)
def test_int_properties(self, arr1d, propname):
warn = None
msg = "weekofyear and week have been deprecated, please use"
if propname in ["week", "weekofyear"]:
# GH#33595 Deprecate week and weekofyear
warn = FutureWarning
dti = self.index_cls(arr1d)
arr = arr1d
with tm.assert_produces_warning(warn, match=msg):
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, arr1d, fixed_now_ts):
arr = arr1d
dti = self.index_cls(arr1d)
now = fixed_now_ts.tz_localize(dti.tz)
result = arr.take([-1, 1], allow_fill=True, fill_value=now)
assert result[0] == now
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
# fill_value Timedelta invalid
arr.take([-1, 1], allow_fill=True, fill_value=now - now)
with pytest.raises(TypeError, match=msg):
# fill_value Period invalid
arr.take([-1, 1], allow_fill=True, fill_value=Period("2014Q1"))
tz = None if dti.tz is not None else "US/Eastern"
now = fixed_now_ts.tz_localize(tz)
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
with pytest.raises(TypeError, match=msg):
# Timestamp with mismatched tz-awareness
arr.take([-1, 1], allow_fill=True, fill_value=now)
value = NaT.value
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=value)
value = np.timedelta64("NaT", "ns")
with pytest.raises(TypeError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
if arr.tz is not None:
# GH#37356
# Assuming here that arr1d fixture does not include Australia/Melbourne
value = fixed_now_ts.tz_localize("Australia/Melbourne")
msg = "Timezones don't match. .* != 'Australia/Melbourne'"
with pytest.raises(ValueError, match=msg):
# require tz match, not just tzawareness match
with tm.assert_produces_warning(
FutureWarning, match="mismatched timezone"
):
result = arr.take([-1, 1], allow_fill=True, fill_value=value)
# once deprecation is enforced
# expected = arr.take([-1, 1], allow_fill=True,
# fill_value=value.tz_convert(arr.dtype.tz))
# tm.assert_equal(result, expected)
def test_concat_same_type_invalid(self, arr1d):
# different timezones
arr = arr1d
if arr.tz is None:
other = arr.tz_localize("UTC")
else:
other = arr.tz_localize(None)
with pytest.raises(ValueError, match="to_concat must have the same"):
arr._concat_same_type([arr, other])
def test_concat_same_type_different_freq(self):
# we *can* concatenate DTI with different freqs.
a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central"))
result = DatetimeArray._concat_same_type([a, b])
expected = DatetimeArray(
pd.to_datetime(
[
"2000-01-01 00:00:00",
"2000-01-02 00:00:00",
"2000-01-01 00:00:00",
"2000-01-01 01:00:00",
]
).tz_localize("US/Central")
)
tm.assert_datetime_array_equal(result, expected)
def test_strftime(self, arr1d):
arr = arr1d
result = arr.strftime("%Y %b")
expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_strftime_nat(self):
# GH 29578
arr = DatetimeArray(DatetimeIndex(["2019-01-01", NaT]))
result = arr.strftime("%Y-%m-%d")
expected = np.array(["2019-01-01", np.nan], dtype=object)
tm.assert_numpy_array_equal(result, expected)
class TestTimedeltaArray(SharedTests):
index_cls = TimedeltaIndex
array_cls = TimedeltaArray
scalar_type = pd.Timedelta
example_dtype = "m8[ns]"
def test_from_tdi(self):
tdi = TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
assert list(arr) == list(tdi)
# Check that Index.__new__ knows what to do with TimedeltaArray
tdi2 = pd.Index(arr)
assert isinstance(tdi2, TimedeltaIndex)
assert list(tdi2) == list(arr)
def test_astype_object(self):
tdi = TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(tdi)
def test_to_pytimedelta(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.to_pytimedelta()
result = arr.to_pytimedelta()
tm.assert_numpy_array_equal(result, expected)
def test_total_seconds(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.total_seconds()
result = arr.total_seconds()
tm.assert_numpy_array_equal(result, expected.values)
@pytest.mark.parametrize("propname", TimedeltaArray._field_ops)
def test_int_properties(self, timedelta_index, propname):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
result = getattr(arr, propname)
expected = np.array(getattr(tdi, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, timedelta_index):
arr = TimedeltaArray(timedelta_index)
# default asarray gives the same underlying data
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying m8[ns] gives the same result as default
result = np.asarray(arr, dtype="timedelta64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, timedelta_index, fixed_now_ts):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
td1 = pd.Timedelta(days=1)
result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
assert result[0] == td1
value = fixed_now_ts
msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
# fill_value Timestamp invalid
arr.take([0, 1], allow_fill=True, fill_value=value)
value = fixed_now_ts.to_period("D")
with pytest.raises(TypeError, match=msg):
# fill_value Period invalid
arr.take([0, 1], allow_fill=True, fill_value=value)
value = np.datetime64("NaT", "ns")
with pytest.raises(TypeError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
class TestPeriodArray(SharedTests):
index_cls = PeriodIndex
array_cls = PeriodArray
scalar_type = Period
example_dtype = PeriodIndex([], freq="W").dtype
@pytest.fixture
def arr1d(self, period_index):
"""
Fixture returning DatetimeArray from parametrized PeriodIndex objects
"""
return period_index._data
def test_from_pi(self, arr1d):
pi = self.index_cls(arr1d)
arr = arr1d
assert list(arr) == list(pi)
# Check that Index.__new__ knows what to do with PeriodArray
pi2 = pd.Index(arr)
assert isinstance(pi2, PeriodIndex)
assert list(pi2) == list(arr)
def test_astype_object(self, arr1d):
pi = self.index_cls(arr1d)
arr = arr1d
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(pi)
def test_take_fill_valid(self, arr1d):
arr = arr1d
value = NaT.value
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=value)
value = np.timedelta64("NaT", "ns")
with pytest.raises(TypeError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
@pytest.mark.parametrize("how", ["S", "E"])
def test_to_timestamp(self, how, arr1d):
pi = self.index_cls(arr1d)
arr = arr1d
expected = DatetimeArray(pi.to_timestamp(how=how))
result = arr.to_timestamp(how=how)
assert isinstance(result, DatetimeArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
def test_to_timestamp_roundtrip_bday(self):
# Case where infer_freq inside would choose "D" instead of "B"
dta = pd.date_range("2021-10-18", periods=3, freq="B")._data
parr = dta.to_period()
result = parr.to_timestamp()
assert result.freq == "B"
tm.assert_extension_array_equal(result, dta)
dta2 = dta[::2]
parr2 = dta2.to_period()
result2 = parr2.to_timestamp()
assert result2.freq == "2B"
tm.assert_extension_array_equal(result2, dta2)
parr3 = dta.to_period("2B")
result3 = parr3.to_timestamp()
assert result3.freq == "B"
tm.assert_extension_array_equal(result3, dta)
def test_to_timestamp_out_of_bounds(self):
# GH#19643 previously overflowed silently
pi = pd.period_range("1500", freq="Y", periods=3)
msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00"
with pytest.raises(OutOfBoundsDatetime, match=msg):
pi.to_timestamp()
with pytest.raises(OutOfBoundsDatetime, match=msg):
pi._data.to_timestamp()
@pytest.mark.parametrize("propname", PeriodArray._bool_ops)
def test_bool_properties(self, arr1d, propname):
# in this case _bool_ops is just `is_leap_year`
pi = self.index_cls(arr1d)
arr = arr1d
result = getattr(arr, propname)
expected = np.array(getattr(pi, propname))
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", PeriodArray._field_ops)
def test_int_properties(self, arr1d, propname):
pi = self.index_cls(arr1d)
arr = arr1d
result = getattr(arr, propname)
expected = np.array(getattr(pi, propname))
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, arr1d):
arr = arr1d
# default asarray gives objects
result = np.asarray(arr)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to object dtype (same as default)
result = np.asarray(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
result = np.asarray(arr, dtype="int64")
tm.assert_numpy_array_equal(result, arr.asi8)
# to other dtypes
msg = r"float\(\) argument must be a string or a( real)? number, not 'Period'"
with pytest.raises(TypeError, match=msg):
np.asarray(arr, dtype="float64")
result = np.asarray(arr, dtype="S20")
expected = np.asarray(arr).astype("S20")
tm.assert_numpy_array_equal(result, expected)
def test_strftime(self, arr1d):
arr = arr1d
result = arr.strftime("%Y")
expected = np.array([per.strftime("%Y") for per in arr], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_strftime_nat(self):
# GH 29578
arr = PeriodArray(PeriodIndex(["2019-01-01", NaT], dtype="period[D]"))
result = arr.strftime("%Y-%m-%d")
expected = np.array(["2019-01-01", np.nan], dtype=object)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"arr,casting_nats",
[
(
TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
(NaT, np.timedelta64("NaT", "ns")),
),
(
pd.date_range("2000-01-01", periods=3, freq="D")._data,
(NaT, np.datetime64("NaT", "ns")),
),
(pd.period_range("2000-01-01", periods=3, freq="D")._data, (NaT,)),
],
ids=lambda x: type(x).__name__,
)
def test_casting_nat_setitem_array(arr, casting_nats):
expected = type(arr)._from_sequence([NaT, arr[1], arr[2]])
for nat in casting_nats:
arr = arr.copy()
arr[0] = nat
tm.assert_equal(arr, expected)
@pytest.mark.parametrize(
"arr,non_casting_nats",
[
(
TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
(np.datetime64("NaT", "ns"), NaT.value),
),
(
pd.date_range("2000-01-01", periods=3, freq="D")._data,
(np.timedelta64("NaT", "ns"), NaT.value),
),
(
pd.period_range("2000-01-01", periods=3, freq="D")._data,
(np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), NaT.value),
),
],
ids=lambda x: type(x).__name__,
)
def test_invalid_nat_setitem_array(arr, non_casting_nats):
msg = (
"value should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. "
"Got '(timedelta64|datetime64|int)' instead."
)
for nat in non_casting_nats:
with pytest.raises(TypeError, match=msg):
arr[0] = nat
@pytest.mark.parametrize(
"arr",
[
pd.date_range("2000", periods=4).array,
pd.timedelta_range("2000", periods=4).array,
],
)
def test_to_numpy_extra(arr):
arr[0] = NaT
original = arr.copy()
result = arr.to_numpy()
assert np.isnan(result[0])
result = arr.to_numpy(dtype="int64")
assert result[0] == -9223372036854775808
result = arr.to_numpy(dtype="int64", na_value=0)
assert result[0] == 0
result = arr.to_numpy(na_value=arr[1].to_numpy())
assert result[0] == result[1]
result = arr.to_numpy(na_value=arr[1].to_numpy(copy=False))
assert result[0] == result[1]
tm.assert_equal(arr, original)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize(
"values",
[
pd.to_datetime(["2020-01-01", "2020-02-01"]),
TimedeltaIndex([1, 2], unit="D"),
PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
],
)
@pytest.mark.parametrize(
"klass",
[
list,
np.array,
pd.array,
pd.Series,
pd.Index,
pd.Categorical,
pd.CategoricalIndex,
],
)
def test_searchsorted_datetimelike_with_listlike(values, klass, as_index):
# https://github.com/pandas-dev/pandas/issues/32762
if not as_index:
values = values._data
result = values.searchsorted(klass(values))
expected = np.array([0, 1], dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
pd.to_datetime(["2020-01-01", "2020-02-01"]),
TimedeltaIndex([1, 2], unit="D"),
PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
],
)
@pytest.mark.parametrize(
"arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
)
def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg):
# https://github.com/pandas-dev/pandas/issues/32762
msg = "[Unexpected type|Cannot compare]"
with pytest.raises(TypeError, match=msg):
values.searchsorted(arg)
@pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series])
def test_period_index_construction_from_strings(klass):
# https://github.com/pandas-dev/pandas/issues/26109
strings = ["2020Q1", "2020Q2"] * 2
data = klass(strings)
result = PeriodIndex(data, freq="Q")
expected = PeriodIndex([Period(s) for s in strings])
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
def test_from_pandas_array(dtype):
# GH#24615
data = np.array([1, 2, 3], dtype=dtype)
arr = PandasArray(data)
cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype]
result = cls(arr)
expected = cls(data)
tm.assert_extension_array_equal(result, expected)
result = cls._from_sequence(arr)
expected = cls._from_sequence(data)
tm.assert_extension_array_equal(result, expected)
func = {"M8[ns]": _sequence_to_dt64ns, "m8[ns]": sequence_to_td64ns}[dtype]
result = func(arr)[0]
expected = func(data)[0]
tm.assert_equal(result, expected)
func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype]
result = func(arr).array
expected = func(data).array
tm.assert_equal(result, expected)
# Let's check the Indexes while we're here
idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype]
result = idx_cls(arr)
expected = idx_cls(data)
tm.assert_index_equal(result, expected)
@pytest.fixture(
params=[
"memoryview",
"array",
pytest.param("dask", marks=td.skip_if_no("dask.array")),
pytest.param("xarray", marks=td.skip_if_no("xarray")),
]
)
def array_likes(request):
"""
Fixture giving a numpy array and a parametrized 'data' object, which can
be a memoryview, array, dask or xarray object created from the numpy array.
"""
# GH#24539 recognize e.g xarray, dask, ...
arr = np.array([1, 2, 3], dtype=np.int64)
name = request.param
if name == "memoryview":
data = memoryview(arr)
elif name == "array":
# stdlib array
import array
data = array.array("i", arr)
elif name == "dask":
import dask.array
data = dask.array.array(arr)
elif name == "xarray":
import xarray as xr
data = xr.DataArray(arr)
return arr, data
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
def test_from_obscure_array(dtype, array_likes):
# GH#24539 recognize e.g xarray, dask, ...
# Note: we dont do this for PeriodArray bc _from_sequence won't accept
# an array of integers
# TODO: could check with arraylike of Period objects
arr, data = array_likes
cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype]
expected = cls(arr)
result = cls._from_sequence(data)
tm.assert_extension_array_equal(result, expected)
func = {"M8[ns]": _sequence_to_dt64ns, "m8[ns]": sequence_to_td64ns}[dtype]
result = func(arr)[0]
expected = func(data)[0]
tm.assert_equal(result, expected)
if not isinstance(data, memoryview):
# FIXME(GH#44431) these raise on memoryview and attempted fix
# fails on py3.10
func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype]
result = func(arr).array
expected = func(data).array
tm.assert_equal(result, expected)
# Let's check the Indexes while we're here
idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype]
result = idx_cls(arr)
expected = idx_cls(data)
tm.assert_index_equal(result, expected)