ai-content-maker/.venv/Lib/site-packages/pandas/tests/groupby/aggregate/test_aggregate.py

1469 lines
48 KiB
Python

"""
test .agg behavior / note that .apply is tested generally in test_groupby.py
"""
import datetime
import functools
from functools import partial
import re
import numpy as np
import pytest
from pandas.errors import SpecificationError
from pandas.core.dtypes.common import is_integer_dtype
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
concat,
to_datetime,
)
import pandas._testing as tm
from pandas.core.groupby.grouper import Grouping
def test_groupby_agg_no_extra_calls():
# GH#31760
df = DataFrame({"key": ["a", "b", "c", "c"], "value": [1, 2, 3, 4]})
gb = df.groupby("key")["value"]
def dummy_func(x):
assert len(x) != 0
return x.sum()
gb.agg(dummy_func)
def test_agg_regression1(tsframe):
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
def test_agg_must_agg(df):
grouped = df.groupby("A")["C"]
msg = "Must produce aggregated value"
with pytest.raises(Exception, match=msg):
grouped.agg(lambda x: x.describe())
with pytest.raises(Exception, match=msg):
grouped.agg(lambda x: x.index[:2])
def test_agg_ser_multi_key(df):
f = lambda x: x.sum()
results = df.C.groupby([df.A, df.B]).aggregate(f)
expected = df.groupby(["A", "B"]).sum()["C"]
tm.assert_series_equal(results, expected)
def test_groupby_aggregation_mixed_dtype():
# GH 6212
expected = DataFrame(
{
"v1": [5, 5, 7, np.nan, 3, 3, 4, 1],
"v2": [55, 55, 77, np.nan, 33, 33, 44, 11],
},
index=MultiIndex.from_tuples(
[
(1, 95),
(1, 99),
(2, 95),
(2, 99),
("big", "damp"),
("blue", "dry"),
("red", "red"),
("red", "wet"),
],
names=["by1", "by2"],
),
)
df = DataFrame(
{
"v1": [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
"v2": [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
"by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
"by2": [
"wet",
"dry",
99,
95,
np.nan,
"damp",
95,
99,
"red",
99,
np.nan,
np.nan,
],
}
)
g = df.groupby(["by1", "by2"])
result = g[["v1", "v2"]].mean()
tm.assert_frame_equal(result, expected)
def test_groupby_aggregation_multi_level_column():
# GH 29772
lst = [
[True, True, True, False],
[True, False, np.nan, False],
[True, True, np.nan, False],
[True, True, np.nan, False],
]
df = DataFrame(
data=lst,
columns=MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 0), ("B", 1)]),
)
gb = df.groupby(level=1, axis=1)
result = gb.sum(numeric_only=False)
expected = DataFrame({0: [2.0, True, True, True], 1: [1, 0, 1, 1]})
tm.assert_frame_equal(result, expected)
def test_agg_apply_corner(ts, tsframe):
# nothing to group, all NA
grouped = ts.groupby(ts * np.nan, group_keys=False)
assert ts.dtype == np.float64
# groupby float64 values results in Float64Index
exp = Series([], dtype=np.float64, index=Index([], dtype=np.float64))
tm.assert_series_equal(grouped.sum(), exp)
tm.assert_series_equal(grouped.agg(np.sum), exp)
tm.assert_series_equal(grouped.apply(np.sum), exp, check_index_type=False)
# DataFrame
grouped = tsframe.groupby(tsframe["A"] * np.nan, group_keys=False)
exp_df = DataFrame(
columns=tsframe.columns,
dtype=float,
index=Index([], name="A", dtype=np.float64),
)
tm.assert_frame_equal(grouped.sum(), exp_df)
tm.assert_frame_equal(grouped.agg(np.sum), exp_df)
tm.assert_frame_equal(grouped.apply(np.sum), exp_df)
def test_agg_grouping_is_list_tuple(ts):
df = tm.makeTimeDataFrame()
grouped = df.groupby(lambda x: x.year)
grouper = grouped.grouper.groupings[0].grouping_vector
grouped.grouper.groupings[0] = Grouping(ts.index, list(grouper))
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
grouped.grouper.groupings[0] = Grouping(ts.index, tuple(grouper))
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
def test_agg_python_multiindex(mframe):
grouped = mframe.groupby(["A", "B"])
result = grouped.agg(np.mean)
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"groupbyfunc", [lambda x: x.weekday(), [lambda x: x.month, lambda x: x.weekday()]]
)
def test_aggregate_str_func(tsframe, groupbyfunc):
grouped = tsframe.groupby(groupbyfunc)
# single series
result = grouped["A"].agg("std")
expected = grouped["A"].std()
tm.assert_series_equal(result, expected)
# group frame by function name
result = grouped.aggregate("var")
expected = grouped.var()
tm.assert_frame_equal(result, expected)
# group frame by function dict
result = grouped.agg({"A": "var", "B": "std", "C": "mean", "D": "sem"})
expected = DataFrame(
{
"A": grouped["A"].var(),
"B": grouped["B"].std(),
"C": grouped["C"].mean(),
"D": grouped["D"].sem(),
}
)
tm.assert_frame_equal(result, expected)
def test_agg_str_with_kwarg_axis_1_raises(df, reduction_func):
gb = df.groupby(level=0)
if reduction_func in ("idxmax", "idxmin"):
error = TypeError
msg = "reduction operation '.*' not allowed for this dtype"
else:
error = ValueError
msg = f"Operation {reduction_func} does not support axis=1"
with pytest.raises(error, match=msg):
gb.agg(reduction_func, axis=1)
@pytest.mark.parametrize(
"func, expected, dtype, result_dtype_dict",
[
("sum", [5, 7, 9], "int64", {}),
("std", [4.5**0.5] * 3, int, {"i": float, "j": float, "k": float}),
("var", [4.5] * 3, int, {"i": float, "j": float, "k": float}),
("sum", [5, 7, 9], "Int64", {"j": "int64"}),
("std", [4.5**0.5] * 3, "Int64", {"i": float, "j": float, "k": float}),
("var", [4.5] * 3, "Int64", {"i": "float64", "j": "float64", "k": "float64"}),
],
)
def test_multiindex_groupby_mixed_cols_axis1(func, expected, dtype, result_dtype_dict):
# GH#43209
df = DataFrame(
[[1, 2, 3, 4, 5, 6]] * 3,
columns=MultiIndex.from_product([["a", "b"], ["i", "j", "k"]]),
).astype({("a", "j"): dtype, ("b", "j"): dtype})
warn = FutureWarning if func == "std" else None
msg = "The default value of numeric_only"
with tm.assert_produces_warning(warn, match=msg):
result = df.groupby(level=1, axis=1).agg(func)
expected = DataFrame([expected] * 3, columns=["i", "j", "k"]).astype(
result_dtype_dict
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"func, expected_data, result_dtype_dict",
[
("sum", [[2, 4], [10, 12], [18, 20]], {10: "int64", 20: "int64"}),
# std should ideally return Int64 / Float64 #43330
("std", [[2**0.5] * 2] * 3, "float64"),
("var", [[2] * 2] * 3, {10: "float64", 20: "float64"}),
],
)
def test_groupby_mixed_cols_axis1(func, expected_data, result_dtype_dict):
# GH#43209
df = DataFrame(
np.arange(12).reshape(3, 4),
index=Index([0, 1, 0], name="y"),
columns=Index([10, 20, 10, 20], name="x"),
dtype="int64",
).astype({10: "Int64"})
warn = FutureWarning if func == "std" else None
msg = "The default value of numeric_only"
with tm.assert_produces_warning(warn, match=msg):
result = df.groupby("x", axis=1).agg(func)
expected = DataFrame(
data=expected_data,
index=Index([0, 1, 0], name="y"),
columns=Index([10, 20], name="x"),
).astype(result_dtype_dict)
tm.assert_frame_equal(result, expected)
def test_aggregate_item_by_item(df):
grouped = df.groupby("A")
aggfun = lambda ser: ser.size
result = grouped.agg(aggfun)
foo = (df.A == "foo").sum()
bar = (df.A == "bar").sum()
K = len(result.columns)
# GH5782
exp = Series(np.array([foo] * K), index=list("BCD"), name="foo")
tm.assert_series_equal(result.xs("foo"), exp)
exp = Series(np.array([bar] * K), index=list("BCD"), name="bar")
tm.assert_almost_equal(result.xs("bar"), exp)
def aggfun(ser):
return ser.size
result = DataFrame().groupby(df.A).agg(aggfun)
assert isinstance(result, DataFrame)
assert len(result) == 0
def test_wrap_agg_out(three_group):
grouped = three_group.groupby(["A", "B"])
def func(ser):
if ser.dtype == object:
raise TypeError
else:
return ser.sum()
with tm.assert_produces_warning(FutureWarning, match="Dropping invalid columns"):
result = grouped.aggregate(func)
exp_grouped = three_group.loc[:, three_group.columns != "C"]
expected = exp_grouped.groupby(["A", "B"]).aggregate(func)
tm.assert_frame_equal(result, expected)
def test_agg_multiple_functions_maintain_order(df):
# GH #610
funcs = [("mean", np.mean), ("max", np.max), ("min", np.min)]
result = df.groupby("A")["C"].agg(funcs)
exp_cols = Index(["mean", "max", "min"])
tm.assert_index_equal(result.columns, exp_cols)
def test_agg_multiple_functions_same_name():
# GH 30880
df = DataFrame(
np.random.randn(1000, 3),
index=pd.date_range("1/1/2012", freq="S", periods=1000),
columns=["A", "B", "C"],
)
result = df.resample("3T").agg(
{"A": [partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
)
expected_index = pd.date_range("1/1/2012", freq="3T", periods=6)
expected_columns = MultiIndex.from_tuples([("A", "quantile"), ("A", "quantile")])
expected_values = np.array(
[df.resample("3T").A.quantile(q=q).values for q in [0.9999, 0.1111]]
).T
expected = DataFrame(
expected_values, columns=expected_columns, index=expected_index
)
tm.assert_frame_equal(result, expected)
def test_agg_multiple_functions_same_name_with_ohlc_present():
# GH 30880
# ohlc expands dimensions, so different test to the above is required.
df = DataFrame(
np.random.randn(1000, 3),
index=pd.date_range("1/1/2012", freq="S", periods=1000, name="dti"),
columns=Index(["A", "B", "C"], name="alpha"),
)
result = df.resample("3T").agg(
{"A": ["ohlc", partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
)
expected_index = pd.date_range("1/1/2012", freq="3T", periods=6, name="dti")
expected_columns = MultiIndex.from_tuples(
[
("A", "ohlc", "open"),
("A", "ohlc", "high"),
("A", "ohlc", "low"),
("A", "ohlc", "close"),
("A", "quantile", "A"),
("A", "quantile", "A"),
],
names=["alpha", None, None],
)
non_ohlc_expected_values = np.array(
[df.resample("3T").A.quantile(q=q).values for q in [0.9999, 0.1111]]
).T
expected_values = np.hstack([df.resample("3T").A.ohlc(), non_ohlc_expected_values])
expected = DataFrame(
expected_values, columns=expected_columns, index=expected_index
)
tm.assert_frame_equal(result, expected)
def test_multiple_functions_tuples_and_non_tuples(df):
# #1359
funcs = [("foo", "mean"), "std"]
ex_funcs = [("foo", "mean"), ("std", "std")]
result = df.groupby("A")["C"].agg(funcs)
expected = df.groupby("A")["C"].agg(ex_funcs)
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(
FutureWarning, match=r"\['B'\] did not aggregate successfully"
):
result = df.groupby("A").agg(funcs)
with tm.assert_produces_warning(
FutureWarning, match=r"\['B'\] did not aggregate successfully"
):
expected = df.groupby("A").agg(ex_funcs)
tm.assert_frame_equal(result, expected)
def test_more_flexible_frame_multi_function(df):
grouped = df.groupby("A")
exmean = grouped.agg({"C": np.mean, "D": np.mean})
exstd = grouped.agg({"C": np.std, "D": np.std})
expected = concat([exmean, exstd], keys=["mean", "std"], axis=1)
expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
d = {"C": [np.mean, np.std], "D": [np.mean, np.std]}
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
# be careful
result = grouped.aggregate({"C": np.mean, "D": [np.mean, np.std]})
expected = grouped.aggregate({"C": np.mean, "D": [np.mean, np.std]})
tm.assert_frame_equal(result, expected)
def foo(x):
return np.mean(x)
def bar(x):
return np.std(x, ddof=1)
# this uses column selection & renaming
msg = r"nested renamer is not supported"
with pytest.raises(SpecificationError, match=msg):
d = {"C": np.mean, "D": {"foo": np.mean, "bar": np.std}}
grouped.aggregate(d)
# But without renaming, these functions are OK
d = {"C": [np.mean], "D": [foo, bar]}
grouped.aggregate(d)
def test_multi_function_flexible_mix(df):
# GH #1268
grouped = df.groupby("A")
# Expected
d = {"C": {"foo": "mean", "bar": "std"}, "D": {"sum": "sum"}}
# this uses column selection & renaming
msg = r"nested renamer is not supported"
with pytest.raises(SpecificationError, match=msg):
grouped.aggregate(d)
# Test 1
d = {"C": {"foo": "mean", "bar": "std"}, "D": "sum"}
# this uses column selection & renaming
with pytest.raises(SpecificationError, match=msg):
grouped.aggregate(d)
# Test 2
d = {"C": {"foo": "mean", "bar": "std"}, "D": "sum"}
# this uses column selection & renaming
with pytest.raises(SpecificationError, match=msg):
grouped.aggregate(d)
def test_groupby_agg_coercing_bools():
# issue 14873
dat = DataFrame({"a": [1, 1, 2, 2], "b": [0, 1, 2, 3], "c": [None, None, 1, 1]})
gp = dat.groupby("a")
index = Index([1, 2], name="a")
result = gp["b"].aggregate(lambda x: (x != 0).all())
expected = Series([False, True], index=index, name="b")
tm.assert_series_equal(result, expected)
result = gp["c"].aggregate(lambda x: x.isnull().all())
expected = Series([True, False], index=index, name="c")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"op",
[
lambda x: x.sum(),
lambda x: x.cumsum(),
lambda x: x.transform("sum"),
lambda x: x.transform("cumsum"),
lambda x: x.agg("sum"),
lambda x: x.agg("cumsum"),
],
)
def test_bool_agg_dtype(op):
# GH 7001
# Bool sum aggregations result in int
df = DataFrame({"a": [1, 1], "b": [False, True]})
s = df.set_index("a")["b"]
result = op(df.groupby("a"))["b"].dtype
assert is_integer_dtype(result)
result = op(s.groupby("a")).dtype
assert is_integer_dtype(result)
@pytest.mark.parametrize(
"keys, agg_index",
[
(["a"], Index([1], name="a")),
(["a", "b"], MultiIndex([[1], [2]], [[0], [0]], names=["a", "b"])),
],
)
@pytest.mark.parametrize(
"input_dtype", ["bool", "int32", "int64", "float32", "float64"]
)
@pytest.mark.parametrize(
"result_dtype", ["bool", "int32", "int64", "float32", "float64"]
)
@pytest.mark.parametrize("method", ["apply", "aggregate", "transform"])
def test_callable_result_dtype_frame(
keys, agg_index, input_dtype, result_dtype, method
):
# GH 21240
df = DataFrame({"a": [1], "b": [2], "c": [True]})
df["c"] = df["c"].astype(input_dtype)
op = getattr(df.groupby(keys)[["c"]], method)
result = op(lambda x: x.astype(result_dtype).iloc[0])
expected_index = pd.RangeIndex(0, 1) if method == "transform" else agg_index
expected = DataFrame({"c": [df["c"].iloc[0]]}, index=expected_index).astype(
result_dtype
)
if method == "apply":
expected.columns.names = [0]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"keys, agg_index",
[
(["a"], Index([1], name="a")),
(["a", "b"], MultiIndex([[1], [2]], [[0], [0]], names=["a", "b"])),
],
)
@pytest.mark.parametrize("input", [True, 1, 1.0])
@pytest.mark.parametrize("dtype", [bool, int, float])
@pytest.mark.parametrize("method", ["apply", "aggregate", "transform"])
def test_callable_result_dtype_series(keys, agg_index, input, dtype, method):
# GH 21240
df = DataFrame({"a": [1], "b": [2], "c": [input]})
op = getattr(df.groupby(keys)["c"], method)
result = op(lambda x: x.astype(dtype).iloc[0])
expected_index = pd.RangeIndex(0, 1) if method == "transform" else agg_index
expected = Series([df["c"].iloc[0]], index=expected_index, name="c").astype(dtype)
tm.assert_series_equal(result, expected)
def test_order_aggregate_multiple_funcs():
# GH 25692
df = DataFrame({"A": [1, 1, 2, 2], "B": [1, 2, 3, 4]})
res = df.groupby("A").agg(["sum", "max", "mean", "ohlc", "min"])
result = res.columns.levels[1]
expected = Index(["sum", "max", "mean", "ohlc", "min"])
tm.assert_index_equal(result, expected)
def test_ohlc_ea_dtypes(any_numeric_ea_dtype):
# GH#37493
df = DataFrame(
{"a": [1, 1, 2, 3, 4, 4], "b": [22, 11, pd.NA, 10, 20, pd.NA]},
dtype=any_numeric_ea_dtype,
)
result = df.groupby("a").ohlc()
expected = DataFrame(
[[22, 22, 11, 11], [pd.NA] * 4, [10] * 4, [20] * 4],
columns=MultiIndex.from_product([["b"], ["open", "high", "low", "close"]]),
index=Index([1, 2, 3, 4], dtype=any_numeric_ea_dtype, name="a"),
dtype=any_numeric_ea_dtype,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", [np.int64, np.uint64])
@pytest.mark.parametrize("how", ["first", "last", "min", "max", "mean", "median"])
def test_uint64_type_handling(dtype, how):
# GH 26310
df = DataFrame({"x": 6903052872240755750, "y": [1, 2]})
expected = df.groupby("y").agg({"x": how})
df.x = df.x.astype(dtype)
result = df.groupby("y").agg({"x": how})
if how not in ("mean", "median"):
# mean and median always result in floats
result.x = result.x.astype(np.int64)
tm.assert_frame_equal(result, expected, check_exact=True)
def test_func_duplicates_raises():
# GH28426
msg = "Function names"
df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
with pytest.raises(SpecificationError, match=msg):
df.groupby("A").agg(["min", "min"])
@pytest.mark.parametrize(
"index",
[
pd.CategoricalIndex(list("abc")),
pd.interval_range(0, 3),
pd.period_range("2020", periods=3, freq="D"),
MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
],
)
def test_agg_index_has_complex_internals(index):
# GH 31223
df = DataFrame({"group": [1, 1, 2], "value": [0, 1, 0]}, index=index)
result = df.groupby("group").agg({"value": Series.nunique})
expected = DataFrame({"group": [1, 2], "value": [2, 1]}).set_index("group")
tm.assert_frame_equal(result, expected)
def test_agg_split_block():
# https://github.com/pandas-dev/pandas/issues/31522
df = DataFrame(
{
"key1": ["a", "a", "b", "b", "a"],
"key2": ["one", "two", "one", "two", "one"],
"key3": ["three", "three", "three", "six", "six"],
}
)
result = df.groupby("key1").min()
expected = DataFrame(
{"key2": ["one", "one"], "key3": ["six", "six"]},
index=Index(["a", "b"], name="key1"),
)
tm.assert_frame_equal(result, expected)
def test_agg_split_object_part_datetime():
# https://github.com/pandas-dev/pandas/pull/31616
df = DataFrame(
{
"A": pd.date_range("2000", periods=4),
"B": ["a", "b", "c", "d"],
"C": [1, 2, 3, 4],
"D": ["b", "c", "d", "e"],
"E": pd.date_range("2000", periods=4),
"F": [1, 2, 3, 4],
}
).astype(object)
result = df.groupby([0, 0, 0, 0]).min()
expected = DataFrame(
{
"A": [pd.Timestamp("2000")],
"B": ["a"],
"C": [1],
"D": ["b"],
"E": [pd.Timestamp("2000")],
"F": [1],
}
)
tm.assert_frame_equal(result, expected)
class TestNamedAggregationSeries:
def test_series_named_agg(self):
df = Series([1, 2, 3, 4])
gr = df.groupby([0, 0, 1, 1])
result = gr.agg(a="sum", b="min")
expected = DataFrame(
{"a": [3, 7], "b": [1, 3]}, columns=["a", "b"], index=[0, 1]
)
tm.assert_frame_equal(result, expected)
result = gr.agg(b="min", a="sum")
expected = expected[["b", "a"]]
tm.assert_frame_equal(result, expected)
def test_no_args_raises(self):
gr = Series([1, 2]).groupby([0, 1])
with pytest.raises(TypeError, match="Must provide"):
gr.agg()
# but we do allow this
result = gr.agg([])
expected = DataFrame()
tm.assert_frame_equal(result, expected)
def test_series_named_agg_duplicates_no_raises(self):
# GH28426
gr = Series([1, 2, 3]).groupby([0, 0, 1])
grouped = gr.agg(a="sum", b="sum")
expected = DataFrame({"a": [3, 3], "b": [3, 3]})
tm.assert_frame_equal(expected, grouped)
def test_mangled(self):
gr = Series([1, 2, 3]).groupby([0, 0, 1])
result = gr.agg(a=lambda x: 0, b=lambda x: 1)
expected = DataFrame({"a": [0, 0], "b": [1, 1]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"inp",
[
pd.NamedAgg(column="anything", aggfunc="min"),
("anything", "min"),
["anything", "min"],
],
)
def test_named_agg_nametuple(self, inp):
# GH34422
s = Series([1, 1, 2, 2, 3, 3, 4, 5])
msg = f"func is expected but received {type(inp).__name__}"
with pytest.raises(TypeError, match=msg):
s.groupby(s.values).agg(a=inp)
class TestNamedAggregationDataFrame:
def test_agg_relabel(self):
df = DataFrame(
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
)
result = df.groupby("group").agg(a_max=("A", "max"), b_max=("B", "max"))
expected = DataFrame(
{"a_max": [1, 3], "b_max": [6, 8]},
index=Index(["a", "b"], name="group"),
columns=["a_max", "b_max"],
)
tm.assert_frame_equal(result, expected)
# order invariance
p98 = functools.partial(np.percentile, q=98)
result = df.groupby("group").agg(
b_min=("B", "min"),
a_min=("A", min),
a_mean=("A", np.mean),
a_max=("A", "max"),
b_max=("B", "max"),
a_98=("A", p98),
)
expected = DataFrame(
{
"b_min": [5, 7],
"a_min": [0, 2],
"a_mean": [0.5, 2.5],
"a_max": [1, 3],
"b_max": [6, 8],
"a_98": [0.98, 2.98],
},
index=Index(["a", "b"], name="group"),
columns=["b_min", "a_min", "a_mean", "a_max", "b_max", "a_98"],
)
tm.assert_frame_equal(result, expected)
def test_agg_relabel_non_identifier(self):
df = DataFrame(
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
)
result = df.groupby("group").agg(**{"my col": ("A", "max")})
expected = DataFrame({"my col": [1, 3]}, index=Index(["a", "b"], name="group"))
tm.assert_frame_equal(result, expected)
def test_duplicate_no_raises(self):
# GH 28426, if use same input function on same column,
# no error should raise
df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
grouped = df.groupby("A").agg(a=("B", "min"), b=("B", "min"))
expected = DataFrame({"a": [1, 3], "b": [1, 3]}, index=Index([0, 1], name="A"))
tm.assert_frame_equal(grouped, expected)
quant50 = functools.partial(np.percentile, q=50)
quant70 = functools.partial(np.percentile, q=70)
quant50.__name__ = "quant50"
quant70.__name__ = "quant70"
test = DataFrame({"col1": ["a", "a", "b", "b", "b"], "col2": [1, 2, 3, 4, 5]})
grouped = test.groupby("col1").agg(
quantile_50=("col2", quant50), quantile_70=("col2", quant70)
)
expected = DataFrame(
{"quantile_50": [1.5, 4.0], "quantile_70": [1.7, 4.4]},
index=Index(["a", "b"], name="col1"),
)
tm.assert_frame_equal(grouped, expected)
def test_agg_relabel_with_level(self):
df = DataFrame(
{"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]},
index=MultiIndex.from_product([["A", "B"], ["a", "b"]]),
)
result = df.groupby(level=0).agg(
aa=("A", "max"), bb=("A", "min"), cc=("B", "mean")
)
expected = DataFrame(
{"aa": [0, 1], "bb": [0, 1], "cc": [1.5, 3.5]}, index=["A", "B"]
)
tm.assert_frame_equal(result, expected)
def test_agg_relabel_other_raises(self):
df = DataFrame({"A": [0, 0, 1], "B": [1, 2, 3]})
grouped = df.groupby("A")
match = "Must provide"
with pytest.raises(TypeError, match=match):
grouped.agg(foo=1)
with pytest.raises(TypeError, match=match):
grouped.agg()
with pytest.raises(TypeError, match=match):
grouped.agg(a=("B", "max"), b=(1, 2, 3))
def test_missing_raises(self):
df = DataFrame({"A": [0, 1], "B": [1, 2]})
match = re.escape("Column(s) ['C'] do not exist")
with pytest.raises(KeyError, match=match):
df.groupby("A").agg(c=("C", "sum"))
def test_agg_namedtuple(self):
df = DataFrame({"A": [0, 1], "B": [1, 2]})
result = df.groupby("A").agg(
b=pd.NamedAgg("B", "sum"), c=pd.NamedAgg(column="B", aggfunc="count")
)
expected = df.groupby("A").agg(b=("B", "sum"), c=("B", "count"))
tm.assert_frame_equal(result, expected)
def test_mangled(self):
df = DataFrame({"A": [0, 1], "B": [1, 2], "C": [3, 4]})
result = df.groupby("A").agg(b=("B", lambda x: 0), c=("C", lambda x: 1))
expected = DataFrame({"b": [0, 0], "c": [1, 1]}, index=Index([0, 1], name="A"))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"agg_col1, agg_col2, agg_col3, agg_result1, agg_result2, agg_result3",
[
(
(("y", "A"), "max"),
(("y", "A"), np.min),
(("y", "B"), "mean"),
[1, 3],
[0, 2],
[5.5, 7.5],
),
(
(("y", "A"), lambda x: max(x)),
(("y", "A"), lambda x: 1),
(("y", "B"), "mean"),
[1, 3],
[1, 1],
[5.5, 7.5],
),
(
pd.NamedAgg(("y", "A"), "max"),
pd.NamedAgg(("y", "B"), np.mean),
pd.NamedAgg(("y", "A"), lambda x: 1),
[1, 3],
[5.5, 7.5],
[1, 1],
),
],
)
def test_agg_relabel_multiindex_column(
agg_col1, agg_col2, agg_col3, agg_result1, agg_result2, agg_result3
):
# GH 29422, add tests for multiindex column cases
df = DataFrame(
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
)
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
idx = Index(["a", "b"], name=("x", "group"))
result = df.groupby(("x", "group")).agg(a_max=(("y", "A"), "max"))
expected = DataFrame({"a_max": [1, 3]}, index=idx)
tm.assert_frame_equal(result, expected)
result = df.groupby(("x", "group")).agg(
col_1=agg_col1, col_2=agg_col2, col_3=agg_col3
)
expected = DataFrame(
{"col_1": agg_result1, "col_2": agg_result2, "col_3": agg_result3}, index=idx
)
tm.assert_frame_equal(result, expected)
def test_agg_relabel_multiindex_raises_not_exist():
# GH 29422, add test for raises scenario when aggregate column does not exist
df = DataFrame(
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
)
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
with pytest.raises(KeyError, match="do not exist"):
df.groupby(("x", "group")).agg(a=(("Y", "a"), "max"))
def test_agg_relabel_multiindex_duplicates():
# GH29422, add test for raises scenario when getting duplicates
# GH28426, after this change, duplicates should also work if the relabelling is
# different
df = DataFrame(
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
)
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
result = df.groupby(("x", "group")).agg(
a=(("y", "A"), "min"), b=(("y", "A"), "min")
)
idx = Index(["a", "b"], name=("x", "group"))
expected = DataFrame({"a": [0, 2], "b": [0, 2]}, index=idx)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("kwargs", [{"c": ["min"]}, {"b": [], "c": ["min"]}])
def test_groupby_aggregate_empty_key(kwargs):
# GH: 32580
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
result = df.groupby("a").agg(kwargs)
expected = DataFrame(
[1, 4],
index=Index([1, 2], dtype="int64", name="a"),
columns=MultiIndex.from_tuples([["c", "min"]]),
)
tm.assert_frame_equal(result, expected)
def test_groupby_aggregate_empty_key_empty_return():
# GH: 32580 Check if everything works, when return is empty
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
result = df.groupby("a").agg({"b": []})
expected = DataFrame(columns=MultiIndex(levels=[["b"], []], codes=[[], []]))
tm.assert_frame_equal(result, expected)
def test_groupby_aggregate_empty_with_multiindex_frame():
# GH 39178
df = DataFrame(columns=["a", "b", "c"])
result = df.groupby(["a", "b"], group_keys=False).agg(d=("c", list))
expected = DataFrame(
columns=["d"], index=MultiIndex([[], []], [[], []], names=["a", "b"])
)
tm.assert_frame_equal(result, expected)
def test_grouby_agg_loses_results_with_as_index_false_relabel():
# GH 32240: When the aggregate function relabels column names and
# as_index=False is specified, the results are dropped.
df = DataFrame(
{"key": ["x", "y", "z", "x", "y", "z"], "val": [1.0, 0.8, 2.0, 3.0, 3.6, 0.75]}
)
grouped = df.groupby("key", as_index=False)
result = grouped.agg(min_val=pd.NamedAgg(column="val", aggfunc="min"))
expected = DataFrame({"key": ["x", "y", "z"], "min_val": [1.0, 0.8, 0.75]})
tm.assert_frame_equal(result, expected)
def test_grouby_agg_loses_results_with_as_index_false_relabel_multiindex():
# GH 32240: When the aggregate function relabels column names and
# as_index=False is specified, the results are dropped. Check if
# multiindex is returned in the right order
df = DataFrame(
{
"key": ["x", "y", "x", "y", "x", "x"],
"key1": ["a", "b", "c", "b", "a", "c"],
"val": [1.0, 0.8, 2.0, 3.0, 3.6, 0.75],
}
)
grouped = df.groupby(["key", "key1"], as_index=False)
result = grouped.agg(min_val=pd.NamedAgg(column="val", aggfunc="min"))
expected = DataFrame(
{"key": ["x", "x", "y"], "key1": ["a", "c", "b"], "min_val": [1.0, 0.75, 0.8]}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"func", [lambda s: s.mean(), lambda s: np.mean(s), lambda s: np.nanmean(s)]
)
def test_multiindex_custom_func(func):
# GH 31777
data = [[1, 4, 2], [5, 7, 1]]
df = DataFrame(
data,
columns=MultiIndex.from_arrays(
[[1, 1, 2], [3, 4, 3]], names=["Sisko", "Janeway"]
),
)
result = df.groupby(np.array([0, 1])).agg(func)
expected_dict = {
(1, 3): {0: 1.0, 1: 5.0},
(1, 4): {0: 4.0, 1: 7.0},
(2, 3): {0: 2.0, 1: 1.0},
}
expected = DataFrame(expected_dict)
expected.columns = df.columns
tm.assert_frame_equal(result, expected)
def myfunc(s):
return np.percentile(s, q=0.90)
@pytest.mark.parametrize("func", [lambda s: np.percentile(s, q=0.90), myfunc])
def test_lambda_named_agg(func):
# see gh-28467
animals = DataFrame(
{
"kind": ["cat", "dog", "cat", "dog"],
"height": [9.1, 6.0, 9.5, 34.0],
"weight": [7.9, 7.5, 9.9, 198.0],
}
)
result = animals.groupby("kind").agg(
mean_height=("height", "mean"), perc90=("height", func)
)
expected = DataFrame(
[[9.3, 9.1036], [20.0, 6.252]],
columns=["mean_height", "perc90"],
index=Index(["cat", "dog"], name="kind"),
)
tm.assert_frame_equal(result, expected)
def test_aggregate_mixed_types():
# GH 16916
df = DataFrame(
data=np.array([0] * 9).reshape(3, 3), columns=list("XYZ"), index=list("abc")
)
df["grouping"] = ["group 1", "group 1", 2]
result = df.groupby("grouping").aggregate(lambda x: x.tolist())
expected_data = [[[0], [0], [0]], [[0, 0], [0, 0], [0, 0]]]
expected = DataFrame(
expected_data,
index=Index([2, "group 1"], dtype="object", name="grouping"),
columns=Index(["X", "Y", "Z"], dtype="object"),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.xfail(reason="Not implemented;see GH 31256")
def test_aggregate_udf_na_extension_type():
# https://github.com/pandas-dev/pandas/pull/31359
# This is currently failing to cast back to Int64Dtype.
# The presence of the NA causes two problems
# 1. NA is not an instance of Int64Dtype.type (numpy.int64)
# 2. The presence of an NA forces object type, so the non-NA values is
# a Python int rather than a NumPy int64. Python ints aren't
# instances of numpy.int64.
def aggfunc(x):
if all(x > 2):
return 1
else:
return pd.NA
df = DataFrame({"A": pd.array([1, 2, 3])})
result = df.groupby([1, 1, 2]).agg(aggfunc)
expected = DataFrame({"A": pd.array([1, pd.NA], dtype="Int64")}, index=[1, 2])
tm.assert_frame_equal(result, expected)
class TestLambdaMangling:
def test_basic(self):
df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
result = df.groupby("A").agg({"B": [lambda x: 0, lambda x: 1]})
expected = DataFrame(
{("B", "<lambda_0>"): [0, 0], ("B", "<lambda_1>"): [1, 1]},
index=Index([0, 1], name="A"),
)
tm.assert_frame_equal(result, expected)
def test_mangle_series_groupby(self):
gr = Series([1, 2, 3, 4]).groupby([0, 0, 1, 1])
result = gr.agg([lambda x: 0, lambda x: 1])
expected = DataFrame({"<lambda_0>": [0, 0], "<lambda_1>": [1, 1]})
tm.assert_frame_equal(result, expected)
@pytest.mark.xfail(reason="GH-26611. kwargs for multi-agg.")
@pytest.mark.filterwarnings("ignore:Dropping invalid columns:FutureWarning")
def test_with_kwargs(self):
f1 = lambda x, y, b=1: x.sum() + y + b
f2 = lambda x, y, b=2: x.sum() + y * b
result = Series([1, 2]).groupby([0, 0]).agg([f1, f2], 0)
expected = DataFrame({"<lambda_0>": [4], "<lambda_1>": [6]})
tm.assert_frame_equal(result, expected)
result = Series([1, 2]).groupby([0, 0]).agg([f1, f2], 0, b=10)
expected = DataFrame({"<lambda_0>": [13], "<lambda_1>": [30]})
tm.assert_frame_equal(result, expected)
def test_agg_with_one_lambda(self):
# GH 25719, write tests for DataFrameGroupby.agg with only one lambda
df = DataFrame(
{
"kind": ["cat", "dog", "cat", "dog"],
"height": [9.1, 6.0, 9.5, 34.0],
"weight": [7.9, 7.5, 9.9, 198.0],
}
)
columns = ["height_sqr_min", "height_max", "weight_max"]
expected = DataFrame(
{
"height_sqr_min": [82.81, 36.00],
"height_max": [9.5, 34.0],
"weight_max": [9.9, 198.0],
},
index=Index(["cat", "dog"], name="kind"),
columns=columns,
)
# check pd.NameAgg case
result1 = df.groupby(by="kind").agg(
height_sqr_min=pd.NamedAgg(
column="height", aggfunc=lambda x: np.min(x**2)
),
height_max=pd.NamedAgg(column="height", aggfunc="max"),
weight_max=pd.NamedAgg(column="weight", aggfunc="max"),
)
tm.assert_frame_equal(result1, expected)
# check agg(key=(col, aggfunc)) case
result2 = df.groupby(by="kind").agg(
height_sqr_min=("height", lambda x: np.min(x**2)),
height_max=("height", "max"),
weight_max=("weight", "max"),
)
tm.assert_frame_equal(result2, expected)
def test_agg_multiple_lambda(self):
# GH25719, test for DataFrameGroupby.agg with multiple lambdas
# with mixed aggfunc
df = DataFrame(
{
"kind": ["cat", "dog", "cat", "dog"],
"height": [9.1, 6.0, 9.5, 34.0],
"weight": [7.9, 7.5, 9.9, 198.0],
}
)
columns = [
"height_sqr_min",
"height_max",
"weight_max",
"height_max_2",
"weight_min",
]
expected = DataFrame(
{
"height_sqr_min": [82.81, 36.00],
"height_max": [9.5, 34.0],
"weight_max": [9.9, 198.0],
"height_max_2": [9.5, 34.0],
"weight_min": [7.9, 7.5],
},
index=Index(["cat", "dog"], name="kind"),
columns=columns,
)
# check agg(key=(col, aggfunc)) case
result1 = df.groupby(by="kind").agg(
height_sqr_min=("height", lambda x: np.min(x**2)),
height_max=("height", "max"),
weight_max=("weight", "max"),
height_max_2=("height", lambda x: np.max(x)),
weight_min=("weight", lambda x: np.min(x)),
)
tm.assert_frame_equal(result1, expected)
# check pd.NamedAgg case
result2 = df.groupby(by="kind").agg(
height_sqr_min=pd.NamedAgg(
column="height", aggfunc=lambda x: np.min(x**2)
),
height_max=pd.NamedAgg(column="height", aggfunc="max"),
weight_max=pd.NamedAgg(column="weight", aggfunc="max"),
height_max_2=pd.NamedAgg(column="height", aggfunc=lambda x: np.max(x)),
weight_min=pd.NamedAgg(column="weight", aggfunc=lambda x: np.min(x)),
)
tm.assert_frame_equal(result2, expected)
def test_groupby_get_by_index():
# GH 33439
df = DataFrame({"A": ["S", "W", "W"], "B": [1.0, 1.0, 2.0]})
res = df.groupby("A").agg({"B": lambda x: x.get(x.index[-1])})
expected = DataFrame({"A": ["S", "W"], "B": [1.0, 2.0]}).set_index("A")
tm.assert_frame_equal(res, expected)
@pytest.mark.parametrize(
"grp_col_dict, exp_data",
[
({"nr": "min", "cat_ord": "min"}, {"nr": [1, 5], "cat_ord": ["a", "c"]}),
({"cat_ord": "min"}, {"cat_ord": ["a", "c"]}),
({"nr": "min"}, {"nr": [1, 5]}),
],
)
def test_groupby_single_agg_cat_cols(grp_col_dict, exp_data):
# test single aggregations on ordered categorical cols GHGH27800
# create the result dataframe
input_df = DataFrame(
{
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
"cat_ord": list("aabbccdd"),
"cat": list("aaaabbbb"),
}
)
input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
result_df = input_df.groupby("cat").agg(grp_col_dict)
# create expected dataframe
cat_index = pd.CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
)
expected_df = DataFrame(data=exp_data, index=cat_index)
if "cat_ord" in expected_df:
# ordered categorical columns should be preserved
dtype = input_df["cat_ord"].dtype
expected_df["cat_ord"] = expected_df["cat_ord"].astype(dtype)
tm.assert_frame_equal(result_df, expected_df)
@pytest.mark.parametrize(
"grp_col_dict, exp_data",
[
({"nr": ["min", "max"], "cat_ord": "min"}, [(1, 4, "a"), (5, 8, "c")]),
({"nr": "min", "cat_ord": ["min", "max"]}, [(1, "a", "b"), (5, "c", "d")]),
({"cat_ord": ["min", "max"]}, [("a", "b"), ("c", "d")]),
],
)
def test_groupby_combined_aggs_cat_cols(grp_col_dict, exp_data):
# test combined aggregations on ordered categorical cols GH27800
# create the result dataframe
input_df = DataFrame(
{
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
"cat_ord": list("aabbccdd"),
"cat": list("aaaabbbb"),
}
)
input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
result_df = input_df.groupby("cat").agg(grp_col_dict)
# create expected dataframe
cat_index = pd.CategoricalIndex(
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
)
# unpack the grp_col_dict to create the multi-index tuple
# this tuple will be used to create the expected dataframe index
multi_index_list = []
for k, v in grp_col_dict.items():
if isinstance(v, list):
for value in v:
multi_index_list.append([k, value])
else:
multi_index_list.append([k, v])
multi_index = MultiIndex.from_tuples(tuple(multi_index_list))
expected_df = DataFrame(data=exp_data, columns=multi_index, index=cat_index)
for col in expected_df.columns:
if isinstance(col, tuple) and "cat_ord" in col:
# ordered categorical should be preserved
expected_df[col] = expected_df[col].astype(input_df["cat_ord"].dtype)
tm.assert_frame_equal(result_df, expected_df)
def test_nonagg_agg():
# GH 35490 - Single/Multiple agg of non-agg function give same results
# TODO: agg should raise for functions that don't aggregate
df = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 2, 1]})
g = df.groupby("a")
result = g.agg(["cumsum"])
result.columns = result.columns.droplevel(-1)
expected = g.agg("cumsum")
tm.assert_frame_equal(result, expected)
def test_aggregate_datetime_objects():
# https://github.com/pandas-dev/pandas/issues/36003
# ensure we don't raise an error but keep object dtype for out-of-bounds
# datetimes
df = DataFrame(
{
"A": ["X", "Y"],
"B": [
datetime.datetime(2005, 1, 1, 10, 30, 23, 540000),
datetime.datetime(3005, 1, 1, 10, 30, 23, 540000),
],
}
)
result = df.groupby("A").B.max()
expected = df.set_index("A")["B"]
tm.assert_series_equal(result, expected)
def test_groupby_index_object_dtype():
# GH 40014
df = DataFrame({"c0": ["x", "x", "x"], "c1": ["x", "x", "y"], "p": [0, 1, 2]})
df.index = df.index.astype("O")
grouped = df.groupby(["c0", "c1"])
res = grouped.p.agg(lambda x: all(x > 0))
# Check that providing a user-defined function in agg()
# produces the correct index shape when using an object-typed index.
expected_index = MultiIndex.from_tuples(
[("x", "x"), ("x", "y")], names=("c0", "c1")
)
expected = Series([False, True], index=expected_index, name="p")
tm.assert_series_equal(res, expected)
def test_timeseries_groupby_agg():
# GH#43290
def func(ser):
if ser.isna().all():
return None
return np.sum(ser)
df = DataFrame([1.0], index=[pd.Timestamp("2018-01-16 00:00:00+00:00")])
res = df.groupby(lambda x: 1).agg(func)
expected = DataFrame([[1.0]], index=[1])
tm.assert_frame_equal(res, expected)
def test_groupby_aggregate_directory(reduction_func):
# GH#32793
if reduction_func in ["corrwith", "nth"]:
return None
warn = FutureWarning if reduction_func == "mad" else None
obj = DataFrame([[0, 1], [0, np.nan]])
with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"):
result_reduced_series = obj.groupby(0).agg(reduction_func)
result_reduced_frame = obj.groupby(0).agg({1: reduction_func})
if reduction_func in ["size", "ngroup"]:
# names are different: None / 1
tm.assert_series_equal(
result_reduced_series, result_reduced_frame[1], check_names=False
)
else:
tm.assert_frame_equal(result_reduced_series, result_reduced_frame)
tm.assert_series_equal(
result_reduced_series.dtypes, result_reduced_frame.dtypes
)
def test_group_mean_timedelta_nat():
# GH43132
data = Series(["1 day", "3 days", "NaT"], dtype="timedelta64[ns]")
expected = Series(["2 days"], dtype="timedelta64[ns]")
result = data.groupby([0, 0, 0]).mean()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"input_data, expected_output",
[
( # no timezone
["2021-01-01T00:00", "NaT", "2021-01-01T02:00"],
["2021-01-01T01:00"],
),
( # timezone
["2021-01-01T00:00-0100", "NaT", "2021-01-01T02:00-0100"],
["2021-01-01T01:00-0100"],
),
],
)
def test_group_mean_datetime64_nat(input_data, expected_output):
# GH43132
data = to_datetime(Series(input_data))
expected = to_datetime(Series(expected_output))
result = data.groupby([0, 0, 0]).mean()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"func, output", [("mean", [8 + 18j, 10 + 22j]), ("sum", [40 + 90j, 50 + 110j])]
)
def test_groupby_complex(func, output):
# GH#43701
data = Series(np.arange(20).reshape(10, 2).dot([1, 2j]))
result = data.groupby(data.index % 2).agg(func)
expected = Series(output)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", ["min", "max", "var"])
def test_groupby_complex_raises(func):
# GH#43701
data = Series(np.arange(20).reshape(10, 2).dot([1, 2j]))
msg = "No matching signature found"
with pytest.raises(TypeError, match=msg):
data.groupby(data.index % 2).agg(func)
@pytest.mark.parametrize(
"func", [["min"], ["mean", "max"], {"b": "sum"}, {"b": "prod", "c": "median"}]
)
def test_multi_axis_1_raises(func):
# GH#46995
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5], "c": [6, 7, 8]})
gb = df.groupby("a", axis=1)
with pytest.raises(NotImplementedError, match="axis other than 0 is not supported"):
gb.agg(func)
@pytest.mark.parametrize(
"test, constant",
[
([[20, "A"], [20, "B"], [10, "C"]], {0: [10, 20], 1: ["C", ["A", "B"]]}),
([[20, "A"], [20, "B"], [30, "C"]], {0: [20, 30], 1: [["A", "B"], "C"]}),
([["a", 1], ["a", 1], ["b", 2], ["b", 3]], {0: ["a", "b"], 1: [1, [2, 3]]}),
pytest.param(
[["a", 1], ["a", 2], ["b", 3], ["b", 3]],
{0: ["a", "b"], 1: [[1, 2], 3]},
marks=pytest.mark.xfail,
),
],
)
def test_agg_of_mode_list(test, constant):
# GH#25581
df1 = DataFrame(test)
result = df1.groupby(0).agg(Series.mode)
# Mode usually only returns 1 value, but can return a list in the case of a tie.
expected = DataFrame(constant)
expected = expected.set_index(0)
tm.assert_frame_equal(result, expected)
def test_numeric_only_warning_numpy():
# GH#50538
df = DataFrame({"a": [1, 1, 2], "b": list("xyz"), "c": [3, 4, 5]})
gb = df.groupby("a")
msg = "The operation <function mean.*failed"
with tm.assert_produces_warning(FutureWarning, match=msg):
gb.agg(np.mean)
# Ensure users can't pass numeric_only
with pytest.raises(TypeError, match="got an unexpected keyword argument"):
gb.agg(np.mean, numeric_only=True)