ai-content-maker/.venv/Lib/site-packages/pandas/tests/groupby/aggregate/test_numba.py

242 lines
7.8 KiB
Python

import numpy as np
import pytest
from pandas.errors import NumbaUtilError
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
NamedAgg,
Series,
option_context,
)
import pandas._testing as tm
@td.skip_if_no("numba")
def test_correct_function_signature():
def incorrect_function(x):
return sum(x) * 2.7
data = DataFrame(
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
columns=["key", "data"],
)
with pytest.raises(NumbaUtilError, match="The first 2"):
data.groupby("key").agg(incorrect_function, engine="numba")
with pytest.raises(NumbaUtilError, match="The first 2"):
data.groupby("key")["data"].agg(incorrect_function, engine="numba")
@td.skip_if_no("numba")
def test_check_nopython_kwargs():
def incorrect_function(values, index):
return sum(values) * 2.7
data = DataFrame(
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
columns=["key", "data"],
)
with pytest.raises(NumbaUtilError, match="numba does not support"):
data.groupby("key").agg(incorrect_function, engine="numba", a=1)
with pytest.raises(NumbaUtilError, match="numba does not support"):
data.groupby("key")["data"].agg(incorrect_function, engine="numba", a=1)
@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
def test_numba_vs_cython(jit, pandas_obj, nogil, parallel, nopython):
def func_numba(values, index):
return np.mean(values) * 2.7
if jit:
# Test accepted jitted functions
import numba
func_numba = numba.jit(func_numba)
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
if pandas_obj == "Series":
grouped = grouped[1]
result = grouped.agg(func_numba, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
tm.assert_equal(result, expected)
@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
def test_cache(jit, pandas_obj, nogil, parallel, nopython):
# Test that the functions are cached correctly if we switch functions
def func_1(values, index):
return np.mean(values) - 3.4
def func_2(values, index):
return np.mean(values) * 2.7
if jit:
import numba
func_1 = numba.jit(func_1)
func_2 = numba.jit(func_2)
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
if pandas_obj == "Series":
grouped = grouped[1]
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
tm.assert_equal(result, expected)
# Add func_2 to the cache
result = grouped.agg(func_2, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
tm.assert_equal(result, expected)
# Retest func_1 which should use the cache
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
tm.assert_equal(result, expected)
@td.skip_if_no("numba")
def test_use_global_config():
def func_1(values, index):
return np.mean(values) - 3.4
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
expected = grouped.agg(func_1, engine="numba")
with option_context("compute.use_numba", True):
result = grouped.agg(func_1, engine=None)
tm.assert_frame_equal(expected, result)
@td.skip_if_no("numba")
@pytest.mark.parametrize(
"agg_func",
[
["min", "max"],
"min",
{"B": ["min", "max"], "C": "sum"},
NamedAgg(column="B", aggfunc="min"),
],
)
def test_multifunc_notimplimented(agg_func):
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
with pytest.raises(NotImplementedError, match="Numba engine can"):
grouped.agg(agg_func, engine="numba")
with pytest.raises(NotImplementedError, match="Numba engine can"):
grouped[1].agg(agg_func, engine="numba")
@td.skip_if_no("numba")
def test_args_not_cached():
# GH 41647
def sum_last(values, index, n):
return values[-n:].sum()
df = DataFrame({"id": [0, 0, 1, 1], "x": [1, 1, 1, 1]})
grouped_x = df.groupby("id")["x"]
result = grouped_x.agg(sum_last, 1, engine="numba")
expected = Series([1.0] * 2, name="x", index=Index([0, 1], name="id"))
tm.assert_series_equal(result, expected)
result = grouped_x.agg(sum_last, 2, engine="numba")
expected = Series([2.0] * 2, name="x", index=Index([0, 1], name="id"))
tm.assert_series_equal(result, expected)
@td.skip_if_no("numba")
def test_index_data_correctly_passed():
# GH 43133
def f(values, index):
return np.mean(index)
df = DataFrame({"group": ["A", "A", "B"], "v": [4, 5, 6]}, index=[-1, -2, -3])
result = df.groupby("group").aggregate(f, engine="numba")
expected = DataFrame(
[-1.5, -3.0], columns=["v"], index=Index(["A", "B"], name="group")
)
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba")
def test_engine_kwargs_not_cached():
# If the user passes a different set of engine_kwargs don't return the same
# jitted function
nogil = True
parallel = False
nopython = True
def func_kwargs(values, index):
return nogil + parallel + nopython
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
df = DataFrame({"value": [0, 0, 0]})
result = df.groupby(level=0).aggregate(
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame({"value": [2.0, 2.0, 2.0]})
tm.assert_frame_equal(result, expected)
nogil = False
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
result = df.groupby(level=0).aggregate(
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame({"value": [1.0, 1.0, 1.0]})
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore")
def test_multiindex_one_key(nogil, parallel, nopython):
def numba_func(values, index):
return 1
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
result = df.groupby("A").agg(
numba_func, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame([1.0], index=Index([1], name="A"), columns=["C"])
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba")
def test_multiindex_multi_key_not_supported(nogil, parallel, nopython):
def numba_func(values, index):
return 1
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
with pytest.raises(NotImplementedError, match="More than 1 grouping labels"):
df.groupby(["A", "B"]).agg(
numba_func, engine="numba", engine_kwargs=engine_kwargs
)