ai-content-maker/.venv/Lib/site-packages/pandas/tests/test_downstream.py

331 lines
9.6 KiB
Python

"""
Testing that we work in the downstream packages
"""
import importlib
import subprocess
import sys
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
# geopandas, xarray, fsspec, fastparquet all produce these
pytestmark = pytest.mark.filterwarnings(
"ignore:distutils Version classes are deprecated.*:DeprecationWarning"
)
def import_module(name):
# we *only* want to skip if the module is truly not available
# and NOT just an actual import error because of pandas changes
try:
return importlib.import_module(name)
except ModuleNotFoundError:
pytest.skip(f"skipping as {name} not available")
@pytest.fixture
def df():
return DataFrame({"A": [1, 2, 3]})
@pytest.mark.filterwarnings("ignore:.*64Index is deprecated:FutureWarning")
def test_dask(df):
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
olduse = pd.get_option("compute.use_numexpr")
try:
toolz = import_module("toolz") # noqa:F841
dask = import_module("dask") # noqa:F841
import dask.dataframe as dd
ddf = dd.from_pandas(df, npartitions=3)
assert ddf.A is not None
assert ddf.compute() is not None
finally:
pd.set_option("compute.use_numexpr", olduse)
@pytest.mark.filterwarnings("ignore:.*64Index is deprecated:FutureWarning")
@pytest.mark.filterwarnings("ignore:The __array_wrap__:DeprecationWarning")
def test_dask_ufunc():
# At the time of dask 2022.01.0, dask is still directly using __array_wrap__
# for some ufuncs (https://github.com/dask/dask/issues/8580).
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
olduse = pd.get_option("compute.use_numexpr")
try:
dask = import_module("dask") # noqa:F841
import dask.array as da
import dask.dataframe as dd
s = Series([1.5, 2.3, 3.7, 4.0])
ds = dd.from_pandas(s, npartitions=2)
result = da.fix(ds).compute()
expected = np.fix(s)
tm.assert_series_equal(result, expected)
finally:
pd.set_option("compute.use_numexpr", olduse)
@td.skip_if_no("dask")
def test_construct_dask_float_array_int_dtype_match_ndarray():
# GH#40110 make sure we treat a float-dtype dask array with the same
# rules we would for an ndarray
import dask.dataframe as dd
arr = np.array([1, 2.5, 3])
darr = dd.from_array(arr)
res = Series(darr)
expected = Series(arr)
tm.assert_series_equal(res, expected)
res = Series(darr, dtype="i8")
expected = Series(arr, dtype="i8")
tm.assert_series_equal(res, expected)
msg = "In a future version, passing float-dtype values containing NaN"
arr[2] = np.nan
with tm.assert_produces_warning(FutureWarning, match=msg):
res = Series(darr, dtype="i8")
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = Series(arr, dtype="i8")
tm.assert_series_equal(res, expected)
def test_xarray(df):
xarray = import_module("xarray") # noqa:F841
assert df.to_xarray() is not None
@td.skip_if_no("cftime")
@td.skip_if_no("xarray", "0.10.4")
def test_xarray_cftimeindex_nearest():
# https://github.com/pydata/xarray/issues/3751
import cftime
import xarray
times = xarray.cftime_range("0001", periods=2)
key = cftime.DatetimeGregorian(2000, 1, 1)
with tm.assert_produces_warning(
FutureWarning, match="deprecated", check_stacklevel=False
):
result = times.get_loc(key, method="nearest")
expected = 1
assert result == expected
def test_oo_optimizable():
# GH 21071
subprocess.check_call([sys.executable, "-OO", "-c", "import pandas"])
def test_oo_optimized_datetime_index_unpickle():
# GH 42866
subprocess.check_call(
[
sys.executable,
"-OO",
"-c",
(
"import pandas as pd, pickle; "
"pickle.loads(pickle.dumps(pd.date_range('2021-01-01', periods=1)))"
),
]
)
@pytest.mark.network
@tm.network
# Cython import warning
@pytest.mark.filterwarnings("ignore:pandas.util.testing is deprecated")
@pytest.mark.filterwarnings("ignore:can't:ImportWarning")
@pytest.mark.filterwarnings("ignore:.*64Index is deprecated:FutureWarning")
@pytest.mark.filterwarnings(
# patsy needs to update their imports
"ignore:Using or importing the ABCs from 'collections:DeprecationWarning"
)
@pytest.mark.filterwarnings(
# numpy 1.22
"ignore:`np.MachAr` is deprecated.*:DeprecationWarning"
)
def test_statsmodels():
statsmodels = import_module("statsmodels") # noqa:F841
import statsmodels.api as sm
import statsmodels.formula.api as smf
df = sm.datasets.get_rdataset("Guerry", "HistData").data
smf.ols("Lottery ~ Literacy + np.log(Pop1831)", data=df).fit()
# Cython import warning
@pytest.mark.filterwarnings("ignore:can't:ImportWarning")
def test_scikit_learn():
sklearn = import_module("sklearn") # noqa:F841
from sklearn import (
datasets,
svm,
)
digits = datasets.load_digits()
clf = svm.SVC(gamma=0.001, C=100.0)
clf.fit(digits.data[:-1], digits.target[:-1])
clf.predict(digits.data[-1:])
# Cython import warning and traitlets
@pytest.mark.network
@tm.network
@pytest.mark.filterwarnings("ignore")
def test_seaborn():
seaborn = import_module("seaborn")
tips = seaborn.load_dataset("tips")
seaborn.stripplot(x="day", y="total_bill", data=tips)
def test_pandas_gbq():
# Older versions import from non-public, non-existent pandas funcs
pytest.importorskip("pandas_gbq", minversion="0.10.0")
pandas_gbq = import_module("pandas_gbq") # noqa:F841
@pytest.mark.network
@tm.network
@pytest.mark.xfail(
raises=ValueError,
reason="The Quandl API key must be provided either through the api_key "
"variable or through the environmental variable QUANDL_API_KEY",
)
def test_pandas_datareader():
pandas_datareader = import_module("pandas_datareader")
pandas_datareader.DataReader("F", "quandl", "2017-01-01", "2017-02-01")
def test_geopandas():
geopandas = import_module("geopandas")
gdf = geopandas.GeoDataFrame(
{"col": [1, 2, 3], "geometry": geopandas.points_from_xy([1, 2, 3], [1, 2, 3])}
)
assert gdf[["col", "geometry"]].geometry.x.equals(Series([1.0, 2.0, 3.0]))
# Cython import warning
@pytest.mark.filterwarnings("ignore:can't resolve:ImportWarning")
@pytest.mark.filterwarnings("ignore:RangeIndex.* is deprecated:DeprecationWarning")
def test_pyarrow(df):
pyarrow = import_module("pyarrow")
table = pyarrow.Table.from_pandas(df)
result = table.to_pandas()
tm.assert_frame_equal(result, df)
def test_torch_frame_construction(using_array_manager):
# GH#44616
torch = import_module("torch")
val_tensor = torch.randn(700, 64)
df = DataFrame(val_tensor)
if not using_array_manager:
assert np.shares_memory(df, val_tensor)
ser = Series(val_tensor[0])
assert np.shares_memory(ser, val_tensor)
def test_yaml_dump(df):
# GH#42748
yaml = import_module("yaml")
dumped = yaml.dump(df)
loaded = yaml.load(dumped, Loader=yaml.Loader)
tm.assert_frame_equal(df, loaded)
loaded2 = yaml.load(dumped, Loader=yaml.UnsafeLoader)
tm.assert_frame_equal(df, loaded2)
def test_missing_required_dependency():
# GH 23868
# To ensure proper isolation, we pass these flags
# -S : disable site-packages
# -s : disable user site-packages
# -E : disable PYTHON* env vars, especially PYTHONPATH
# https://github.com/MacPython/pandas-wheels/pull/50
pyexe = sys.executable.replace("\\", "/")
# We skip this test if pandas is installed as a site package. We first
# import the package normally and check the path to the module before
# executing the test which imports pandas with site packages disabled.
call = [pyexe, "-c", "import pandas;print(pandas.__file__)"]
output = subprocess.check_output(call).decode()
if "site-packages" in output:
pytest.skip("pandas installed as site package")
# This test will fail if pandas is installed as a site package. The flags
# prevent pandas being imported and the test will report Failed: DID NOT
# RAISE <class 'subprocess.CalledProcessError'>
call = [pyexe, "-sSE", "-c", "import pandas"]
msg = (
rf"Command '\['{pyexe}', '-sSE', '-c', 'import pandas'\]' "
"returned non-zero exit status 1."
)
with pytest.raises(subprocess.CalledProcessError, match=msg) as exc:
subprocess.check_output(call, stderr=subprocess.STDOUT)
output = exc.value.stdout.decode()
for name in ["numpy", "pytz", "dateutil"]:
assert name in output
def test_frame_setitem_dask_array_into_new_col():
# GH#47128
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
olduse = pd.get_option("compute.use_numexpr")
try:
dask = import_module("dask") # noqa:F841
import dask.array as da
dda = da.array([1, 2])
df = DataFrame({"a": ["a", "b"]})
df["b"] = dda
df["c"] = dda
df.loc[[False, True], "b"] = 100
result = df.loc[[1], :]
expected = DataFrame({"a": ["b"], "b": [100], "c": [2]}, index=[1])
tm.assert_frame_equal(result, expected)
finally:
pd.set_option("compute.use_numexpr", olduse)