ai-content-maker/.venv/Lib/site-packages/scipy/fft/_pocketfft/basic.py

252 lines
7.9 KiB
Python

"""
Discrete Fourier Transforms - basic.py
"""
import numpy as np
import functools
from . import pypocketfft as pfft
from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied,
_fix_shape, _fix_shape_1d, _normalization,
_workers)
def c2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None):
""" Return discrete Fourier transform of real or complex sequence. """
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
overwrite_x = overwrite_x or _datacopied(tmp, x)
norm = _normalization(norm, forward)
workers = _workers(workers)
if n is not None:
tmp, copied = _fix_shape_1d(tmp, n, axis)
overwrite_x = overwrite_x or copied
elif tmp.shape[axis] < 1:
message = f"invalid number of data points ({tmp.shape[axis]}) specified"
raise ValueError(message)
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
return pfft.c2c(tmp, (axis,), forward, norm, out, workers)
fft = functools.partial(c2c, True)
fft.__name__ = 'fft'
ifft = functools.partial(c2c, False)
ifft.__name__ = 'ifft'
def r2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""
Discrete Fourier transform of a real sequence.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
norm = _normalization(norm, forward)
workers = _workers(workers)
if not np.isrealobj(tmp):
raise TypeError("x must be a real sequence")
if n is not None:
tmp, _ = _fix_shape_1d(tmp, n, axis)
elif tmp.shape[axis] < 1:
raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified")
# Note: overwrite_x is not utilised
return pfft.r2c(tmp, (axis,), forward, norm, None, workers)
rfft = functools.partial(r2c, True)
rfft.__name__ = 'rfft'
ihfft = functools.partial(r2c, False)
ihfft.__name__ = 'ihfft'
def c2r(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""
Return inverse discrete Fourier transform of real sequence x.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
norm = _normalization(norm, forward)
workers = _workers(workers)
# TODO: Optimize for hermitian and real?
if np.isrealobj(tmp):
tmp = tmp + 0.j
# Last axis utilizes hermitian symmetry
if n is None:
n = (tmp.shape[axis] - 1) * 2
if n < 1:
raise ValueError(f"Invalid number of data points ({n}) specified")
else:
tmp, _ = _fix_shape_1d(tmp, (n//2) + 1, axis)
# Note: overwrite_x is not utilized
return pfft.c2r(tmp, (axis,), n, forward, norm, None, workers)
hfft = functools.partial(c2r, True)
hfft.__name__ = 'hfft'
irfft = functools.partial(c2r, False)
irfft.__name__ = 'irfft'
def hfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete Fourier transform of a Hermitian sequence
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return hfftn(x, s, axes, norm, overwrite_x, workers)
def ihfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete inverse Fourier transform of a Hermitian sequence
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return ihfftn(x, s, axes, norm, overwrite_x, workers)
def c2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""
Return multidimensional discrete Fourier transform.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
overwrite_x = overwrite_x or _datacopied(tmp, x)
workers = _workers(workers)
if len(axes) == 0:
return x
tmp, copied = _fix_shape(tmp, shape, axes)
overwrite_x = overwrite_x or copied
norm = _normalization(norm, forward)
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
return pfft.c2c(tmp, axes, forward, norm, out, workers)
fftn = functools.partial(c2cn, True)
fftn.__name__ = 'fftn'
ifftn = functools.partial(c2cn, False)
ifftn.__name__ = 'ifftn'
def r2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""Return multidimensional discrete Fourier transform of real input"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
if not np.isrealobj(tmp):
raise TypeError("x must be a real sequence")
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
tmp, _ = _fix_shape(tmp, shape, axes)
norm = _normalization(norm, forward)
workers = _workers(workers)
if len(axes) == 0:
raise ValueError("at least 1 axis must be transformed")
# Note: overwrite_x is not utilized
return pfft.r2c(tmp, axes, forward, norm, None, workers)
rfftn = functools.partial(r2cn, True)
rfftn.__name__ = 'rfftn'
ihfftn = functools.partial(r2cn, False)
ihfftn.__name__ = 'ihfftn'
def c2rn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""Multidimensional inverse discrete fourier transform with real output"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
# TODO: Optimize for hermitian and real?
if np.isrealobj(tmp):
tmp = tmp + 0.j
noshape = s is None
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
if len(axes) == 0:
raise ValueError("at least 1 axis must be transformed")
shape = list(shape)
if noshape:
shape[-1] = (x.shape[axes[-1]] - 1) * 2
norm = _normalization(norm, forward)
workers = _workers(workers)
# Last axis utilizes hermitian symmetry
lastsize = shape[-1]
shape[-1] = (shape[-1] // 2) + 1
tmp, _ = tuple(_fix_shape(tmp, shape, axes))
# Note: overwrite_x is not utilized
return pfft.c2r(tmp, axes, lastsize, forward, norm, None, workers)
hfftn = functools.partial(c2rn, True)
hfftn.__name__ = 'hfftn'
irfftn = functools.partial(c2rn, False)
irfftn.__name__ = 'irfftn'
def r2r_fftpack(forward, x, n=None, axis=-1, norm=None, overwrite_x=False):
"""FFT of a real sequence, returning fftpack half complex format"""
tmp = _asfarray(x)
overwrite_x = overwrite_x or _datacopied(tmp, x)
norm = _normalization(norm, forward)
workers = _workers(None)
if tmp.dtype.kind == 'c':
raise TypeError('x must be a real sequence')
if n is not None:
tmp, copied = _fix_shape_1d(tmp, n, axis)
overwrite_x = overwrite_x or copied
elif tmp.shape[axis] < 1:
raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified")
out = (tmp if overwrite_x else None)
return pfft.r2r_fftpack(tmp, (axis,), forward, forward, norm, out, workers)
rfft_fftpack = functools.partial(r2r_fftpack, True)
rfft_fftpack.__name__ = 'rfft_fftpack'
irfft_fftpack = functools.partial(r2r_fftpack, False)
irfft_fftpack.__name__ = 'irfft_fftpack'