ai-content-maker/.venv/Lib/site-packages/scipy/interpolate/tests/test_rgi.py

1112 lines
44 KiB
Python

import itertools
import pytest
import numpy as np
from numpy.testing import (assert_allclose, assert_equal, assert_warns,
assert_array_almost_equal, assert_array_equal)
from pytest import raises as assert_raises
from scipy.interpolate import (RegularGridInterpolator, interpn,
RectBivariateSpline,
NearestNDInterpolator, LinearNDInterpolator)
from scipy.sparse._sputils import matrix
from scipy._lib._util import ComplexWarning
parametrize_rgi_interp_methods = pytest.mark.parametrize(
"method", RegularGridInterpolator._ALL_METHODS
)
class TestRegularGridInterpolator:
def _get_sample_4d(self):
# create a 4-D grid of 3 points in each dimension
points = [(0., .5, 1.)] * 4
values = np.asarray([0., .5, 1.])
values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
return points, values
def _get_sample_4d_2(self):
# create another 4-D grid of 3 points in each dimension
points = [(0., .5, 1.)] * 2 + [(0., 5., 10.)] * 2
values = np.asarray([0., .5, 1.])
values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
return points, values
def _get_sample_4d_3(self):
# create another 4-D grid of 7 points in each dimension
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0)] * 4
values = np.asarray([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0])
values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
return points, values
def _get_sample_4d_4(self):
# create another 4-D grid of 2 points in each dimension
points = [(0.0, 1.0)] * 4
values = np.asarray([0.0, 1.0])
values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
return points, values
@parametrize_rgi_interp_methods
def test_list_input(self, method):
points, values = self._get_sample_4d_3()
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
interp = RegularGridInterpolator(points,
values.tolist(),
method=method)
v1 = interp(sample.tolist())
interp = RegularGridInterpolator(points,
values,
method=method)
v2 = interp(sample)
assert_allclose(v1, v2)
@pytest.mark.parametrize('method', ['cubic', 'quintic', 'pchip'])
def test_spline_dim_error(self, method):
points, values = self._get_sample_4d_4()
match = "points in dimension"
# Check error raise when creating interpolator
with pytest.raises(ValueError, match=match):
RegularGridInterpolator(points, values, method=method)
# Check error raise when creating interpolator
interp = RegularGridInterpolator(points, values)
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
with pytest.raises(ValueError, match=match):
interp(sample, method=method)
@pytest.mark.parametrize(
"points_values, sample",
[
(
_get_sample_4d,
np.asarray(
[[0.1, 0.1, 1.0, 0.9],
[0.2, 0.1, 0.45, 0.8],
[0.5, 0.5, 0.5, 0.5]]
),
),
(_get_sample_4d_2, np.asarray([0.1, 0.1, 10.0, 9.0])),
],
)
def test_linear_and_slinear_close(self, points_values, sample):
points, values = points_values(self)
interp = RegularGridInterpolator(points, values, method="linear")
v1 = interp(sample)
interp = RegularGridInterpolator(points, values, method="slinear")
v2 = interp(sample)
assert_allclose(v1, v2)
def test_derivatives(self):
points, values = self._get_sample_4d()
sample = np.array([[0.1 , 0.1 , 1. , 0.9 ],
[0.2 , 0.1 , 0.45, 0.8 ],
[0.5 , 0.5 , 0.5 , 0.5 ]])
interp = RegularGridInterpolator(points, values, method="slinear")
with assert_raises(ValueError):
# wrong number of derivatives (need 4)
interp(sample, nu=1)
assert_allclose(interp(sample, nu=(1, 0, 0, 0)),
[1, 1, 1], atol=1e-15)
assert_allclose(interp(sample, nu=(0, 1, 0, 0)),
[10, 10, 10], atol=1e-15)
# 2nd derivatives of a linear function are zero
assert_allclose(interp(sample, nu=(0, 1, 1, 0)),
[0, 0, 0], atol=1e-12)
@parametrize_rgi_interp_methods
def test_complex(self, method):
if method == "pchip":
pytest.skip("pchip does not make sense for complex data")
points, values = self._get_sample_4d_3()
values = values - 2j*values
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
interp = RegularGridInterpolator(points, values, method=method)
rinterp = RegularGridInterpolator(points, values.real, method=method)
iinterp = RegularGridInterpolator(points, values.imag, method=method)
v1 = interp(sample)
v2 = rinterp(sample) + 1j*iinterp(sample)
assert_allclose(v1, v2)
def test_cubic_vs_pchip(self):
x, y = [1, 2, 3, 4], [1, 2, 3, 4]
xg, yg = np.meshgrid(x, y, indexing='ij')
values = (lambda x, y: x**4 * y**4)(xg, yg)
cubic = RegularGridInterpolator((x, y), values, method='cubic')
pchip = RegularGridInterpolator((x, y), values, method='pchip')
vals_cubic = cubic([1.5, 2])
vals_pchip = pchip([1.5, 2])
assert not np.allclose(vals_cubic, vals_pchip, atol=1e-14, rtol=0)
def test_linear_xi1d(self):
points, values = self._get_sample_4d_2()
interp = RegularGridInterpolator(points, values)
sample = np.asarray([0.1, 0.1, 10., 9.])
wanted = 1001.1
assert_array_almost_equal(interp(sample), wanted)
def test_linear_xi3d(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values)
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
wanted = np.asarray([1001.1, 846.2, 555.5])
assert_array_almost_equal(interp(sample), wanted)
@pytest.mark.parametrize(
"sample, wanted",
[
(np.asarray([0.1, 0.1, 0.9, 0.9]), 1100.0),
(np.asarray([0.1, 0.1, 0.1, 0.1]), 0.0),
(np.asarray([0.0, 0.0, 0.0, 0.0]), 0.0),
(np.asarray([1.0, 1.0, 1.0, 1.0]), 1111.0),
(np.asarray([0.1, 0.4, 0.6, 0.9]), 1055.0),
],
)
def test_nearest(self, sample, wanted):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values, method="nearest")
assert_array_almost_equal(interp(sample), wanted)
def test_linear_edges(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values)
sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.]])
wanted = np.asarray([0., 1111.])
assert_array_almost_equal(interp(sample), wanted)
def test_valid_create(self):
# create a 2-D grid of 3 points in each dimension
points = [(0., .5, 1.), (0., 1., .5)]
values = np.asarray([0., .5, 1.])
values0 = values[:, np.newaxis]
values1 = values[np.newaxis, :]
values = (values0 + values1 * 10)
assert_raises(ValueError, RegularGridInterpolator, points, values)
points = [((0., .5, 1.), ), (0., .5, 1.)]
assert_raises(ValueError, RegularGridInterpolator, points, values)
points = [(0., .5, .75, 1.), (0., .5, 1.)]
assert_raises(ValueError, RegularGridInterpolator, points, values)
points = [(0., .5, 1.), (0., .5, 1.), (0., .5, 1.)]
assert_raises(ValueError, RegularGridInterpolator, points, values)
points = [(0., .5, 1.), (0., .5, 1.)]
assert_raises(ValueError, RegularGridInterpolator, points, values,
method="undefmethod")
def test_valid_call(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values)
sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.]])
assert_raises(ValueError, interp, sample, "undefmethod")
sample = np.asarray([[0., 0., 0.], [1., 1., 1.]])
assert_raises(ValueError, interp, sample)
sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.1]])
assert_raises(ValueError, interp, sample)
def test_out_of_bounds_extrap(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values, bounds_error=False,
fill_value=None)
sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1],
[21, 2.1, -1.1, -11], [2.1, 2.1, -1.1, -1.1]])
wanted = np.asarray([0., 1111., 11., 11.])
assert_array_almost_equal(interp(sample, method="nearest"), wanted)
wanted = np.asarray([-111.1, 1222.1, -11068., -1186.9])
assert_array_almost_equal(interp(sample, method="linear"), wanted)
def test_out_of_bounds_extrap2(self):
points, values = self._get_sample_4d_2()
interp = RegularGridInterpolator(points, values, bounds_error=False,
fill_value=None)
sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1],
[21, 2.1, -1.1, -11], [2.1, 2.1, -1.1, -1.1]])
wanted = np.asarray([0., 11., 11., 11.])
assert_array_almost_equal(interp(sample, method="nearest"), wanted)
wanted = np.asarray([-12.1, 133.1, -1069., -97.9])
assert_array_almost_equal(interp(sample, method="linear"), wanted)
def test_out_of_bounds_fill(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values, bounds_error=False,
fill_value=np.nan)
sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1],
[2.1, 2.1, -1.1, -1.1]])
wanted = np.asarray([np.nan, np.nan, np.nan])
assert_array_almost_equal(interp(sample, method="nearest"), wanted)
assert_array_almost_equal(interp(sample, method="linear"), wanted)
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
wanted = np.asarray([1001.1, 846.2, 555.5])
assert_array_almost_equal(interp(sample), wanted)
def test_nearest_compare_qhull(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values, method="nearest")
points_qhull = itertools.product(*points)
points_qhull = [p for p in points_qhull]
points_qhull = np.asarray(points_qhull)
values_qhull = values.reshape(-1)
interp_qhull = NearestNDInterpolator(points_qhull, values_qhull)
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
assert_array_almost_equal(interp(sample), interp_qhull(sample))
def test_linear_compare_qhull(self):
points, values = self._get_sample_4d()
interp = RegularGridInterpolator(points, values)
points_qhull = itertools.product(*points)
points_qhull = [p for p in points_qhull]
points_qhull = np.asarray(points_qhull)
values_qhull = values.reshape(-1)
interp_qhull = LinearNDInterpolator(points_qhull, values_qhull)
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
[0.5, 0.5, .5, .5]])
assert_array_almost_equal(interp(sample), interp_qhull(sample))
@pytest.mark.parametrize("method", ["nearest", "linear"])
def test_duck_typed_values(self, method):
x = np.linspace(0, 2, 5)
y = np.linspace(0, 1, 7)
values = MyValue((5, 7))
interp = RegularGridInterpolator((x, y), values, method=method)
v1 = interp([0.4, 0.7])
interp = RegularGridInterpolator((x, y), values._v, method=method)
v2 = interp([0.4, 0.7])
assert_allclose(v1, v2)
def test_invalid_fill_value(self):
np.random.seed(1234)
x = np.linspace(0, 2, 5)
y = np.linspace(0, 1, 7)
values = np.random.rand(5, 7)
# integers can be cast to floats
RegularGridInterpolator((x, y), values, fill_value=1)
# complex values cannot
assert_raises(ValueError, RegularGridInterpolator,
(x, y), values, fill_value=1+2j)
def test_fillvalue_type(self):
# from #3703; test that interpolator object construction succeeds
values = np.ones((10, 20, 30), dtype='>f4')
points = [np.arange(n) for n in values.shape]
# xi = [(1, 1, 1)]
RegularGridInterpolator(points, values)
RegularGridInterpolator(points, values, fill_value=0.)
def test_length_one_axis(self):
# gh-5890, gh-9524 : length-1 axis is legal for method='linear'.
# Along the axis it's linear interpolation; away from the length-1
# axis, it's an extrapolation, so fill_value should be used.
def f(x, y):
return x + y
x = np.linspace(1, 1, 1)
y = np.linspace(1, 10, 10)
data = f(*np.meshgrid(x, y, indexing="ij", sparse=True))
interp = RegularGridInterpolator((x, y), data, method="linear",
bounds_error=False, fill_value=101)
# check values at the grid
assert_allclose(interp(np.array([[1, 1], [1, 5], [1, 10]])),
[2, 6, 11],
atol=1e-14)
# check off-grid interpolation is indeed linear
assert_allclose(interp(np.array([[1, 1.4], [1, 5.3], [1, 10]])),
[2.4, 6.3, 11],
atol=1e-14)
# check exrapolation w/ fill_value
assert_allclose(interp(np.array([1.1, 2.4])),
interp.fill_value,
atol=1e-14)
# check extrapolation: linear along the `y` axis, const along `x`
interp.fill_value = None
assert_allclose(interp([[1, 0.3], [1, 11.5]]),
[1.3, 12.5], atol=1e-15)
assert_allclose(interp([[1.5, 0.3], [1.9, 11.5]]),
[1.3, 12.5], atol=1e-15)
# extrapolation with method='nearest'
interp = RegularGridInterpolator((x, y), data, method="nearest",
bounds_error=False, fill_value=None)
assert_allclose(interp([[1.5, 1.8], [-4, 5.1]]),
[3, 6],
atol=1e-15)
@pytest.mark.parametrize("fill_value", [None, np.nan, np.pi])
@pytest.mark.parametrize("method", ['linear', 'nearest'])
def test_length_one_axis2(self, fill_value, method):
options = {"fill_value": fill_value, "bounds_error": False,
"method": method}
x = np.linspace(0, 2*np.pi, 20)
z = np.sin(x)
fa = RegularGridInterpolator((x,), z[:], **options)
fb = RegularGridInterpolator((x, [0]), z[:, None], **options)
x1a = np.linspace(-1, 2*np.pi+1, 100)
za = fa(x1a)
# evaluated at provided y-value, fb should behave exactly as fa
y1b = np.zeros(100)
zb = fb(np.vstack([x1a, y1b]).T)
assert_allclose(zb, za)
# evaluated at a different y-value, fb should return fill value
y1b = np.ones(100)
zb = fb(np.vstack([x1a, y1b]).T)
if fill_value is None:
assert_allclose(zb, za)
else:
assert_allclose(zb, fill_value)
@pytest.mark.parametrize("method", ['nearest', 'linear'])
def test_nan_x_1d(self, method):
# gh-6624 : if x is nan, result should be nan
f = RegularGridInterpolator(([1, 2, 3],), [10, 20, 30], fill_value=1,
bounds_error=False, method=method)
assert np.isnan(f([np.nan]))
# test arbitrary nan pattern
rng = np.random.default_rng(8143215468)
x = rng.random(size=100)*4
i = rng.random(size=100) > 0.5
x[i] = np.nan
with np.errstate(invalid='ignore'):
# out-of-bounds comparisons, `out_of_bounds += x < grid[0]`,
# generate numpy warnings if `x` contains nans.
# These warnings should propagate to user (since `x` is user
# input) and we simply filter them out.
res = f(x)
assert_equal(res[i], np.nan)
assert_equal(res[~i], f(x[~i]))
# also test the length-one axis f(nan)
x = [1, 2, 3]
y = [1, ]
data = np.ones((3, 1))
f = RegularGridInterpolator((x, y), data, fill_value=1,
bounds_error=False, method=method)
assert np.isnan(f([np.nan, 1]))
assert np.isnan(f([1, np.nan]))
@pytest.mark.parametrize("method", ['nearest', 'linear'])
def test_nan_x_2d(self, method):
x, y = np.array([0, 1, 2]), np.array([1, 3, 7])
def f(x, y):
return x**2 + y**2
xg, yg = np.meshgrid(x, y, indexing='ij', sparse=True)
data = f(xg, yg)
interp = RegularGridInterpolator((x, y), data,
method=method, bounds_error=False)
with np.errstate(invalid='ignore'):
res = interp([[1.5, np.nan], [1, 1]])
assert_allclose(res[1], 2, atol=1e-14)
assert np.isnan(res[0])
# test arbitrary nan pattern
rng = np.random.default_rng(8143215468)
x = rng.random(size=100)*4-1
y = rng.random(size=100)*8
i1 = rng.random(size=100) > 0.5
i2 = rng.random(size=100) > 0.5
i = i1 | i2
x[i1] = np.nan
y[i2] = np.nan
z = np.array([x, y]).T
with np.errstate(invalid='ignore'):
# out-of-bounds comparisons, `out_of_bounds += x < grid[0]`,
# generate numpy warnings if `x` contains nans.
# These warnings should propagate to user (since `x` is user
# input) and we simply filter them out.
res = interp(z)
assert_equal(res[i], np.nan)
assert_equal(res[~i], interp(z[~i]))
@parametrize_rgi_interp_methods
@pytest.mark.parametrize(("ndims", "func"), [
(2, lambda x, y: 2 * x ** 3 + 3 * y ** 2),
(3, lambda x, y, z: 2 * x ** 3 + 3 * y ** 2 - z),
(4, lambda x, y, z, a: 2 * x ** 3 + 3 * y ** 2 - z + a),
(5, lambda x, y, z, a, b: 2 * x ** 3 + 3 * y ** 2 - z + a * b),
])
def test_descending_points_nd(self, method, ndims, func):
if ndims == 5 and method in {"cubic", "quintic"}:
pytest.skip("too slow; OOM (quintic); or nearly so (cubic)")
rng = np.random.default_rng(42)
sample_low = 1
sample_high = 5
test_points = rng.uniform(sample_low, sample_high, size=(2, ndims))
ascending_points = [np.linspace(sample_low, sample_high, 12)
for _ in range(ndims)]
ascending_values = func(*np.meshgrid(*ascending_points,
indexing="ij",
sparse=True))
ascending_interp = RegularGridInterpolator(ascending_points,
ascending_values,
method=method)
ascending_result = ascending_interp(test_points)
descending_points = [xi[::-1] for xi in ascending_points]
descending_values = func(*np.meshgrid(*descending_points,
indexing="ij",
sparse=True))
descending_interp = RegularGridInterpolator(descending_points,
descending_values,
method=method)
descending_result = descending_interp(test_points)
assert_array_equal(ascending_result, descending_result)
def test_invalid_points_order(self):
def val_func_2d(x, y):
return 2 * x ** 3 + 3 * y ** 2
x = np.array([.5, 2., 0., 4., 5.5]) # not ascending or descending
y = np.array([.5, 2., 3., 4., 5.5])
points = (x, y)
values = val_func_2d(*np.meshgrid(*points, indexing='ij',
sparse=True))
match = "must be strictly ascending or descending"
with pytest.raises(ValueError, match=match):
RegularGridInterpolator(points, values)
@parametrize_rgi_interp_methods
def test_fill_value(self, method):
interp = RegularGridInterpolator([np.arange(6)], np.ones(6),
method=method, bounds_error=False)
assert np.isnan(interp([10]))
@parametrize_rgi_interp_methods
def test_nonscalar_values(self, method):
if method == "quintic":
pytest.skip("Way too slow.")
# Verify that non-scalar valued values also works
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5)] * 2 + [
(0.0, 5.0, 10.0, 15.0, 20, 25.0)
] * 2
rng = np.random.default_rng(1234)
values = rng.random((6, 6, 6, 6, 8))
sample = rng.random((7, 3, 4))
interp = RegularGridInterpolator(points, values, method=method,
bounds_error=False)
v = interp(sample)
assert_equal(v.shape, (7, 3, 8), err_msg=method)
vs = []
for j in range(8):
interp = RegularGridInterpolator(points, values[..., j],
method=method,
bounds_error=False)
vs.append(interp(sample))
v2 = np.array(vs).transpose(1, 2, 0)
assert_allclose(v, v2, atol=1e-14, err_msg=method)
@parametrize_rgi_interp_methods
@pytest.mark.parametrize("flip_points", [False, True])
def test_nonscalar_values_2(self, method, flip_points):
if method in {"cubic", "quintic"}:
pytest.skip("Way too slow.")
# Verify that non-scalar valued values also work : use different
# lengths of axes to simplify tracing the internals
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5),
(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0),
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0),
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0, 47)]
# verify, that strictly decreasing dimensions work
if flip_points:
points = [tuple(reversed(p)) for p in points]
rng = np.random.default_rng(1234)
trailing_points = (3, 2)
# NB: values has a `num_trailing_dims` trailing dimension
values = rng.random((6, 7, 8, 9, *trailing_points))
sample = rng.random(4) # a single sample point !
interp = RegularGridInterpolator(points, values, method=method,
bounds_error=False)
v = interp(sample)
# v has a single sample point *per entry in the trailing dimensions*
assert v.shape == (1, *trailing_points)
# check the values, too : manually loop over the trailing dimensions
vs = np.empty(values.shape[-2:])
for i in range(values.shape[-2]):
for j in range(values.shape[-1]):
interp = RegularGridInterpolator(points, values[..., i, j],
method=method,
bounds_error=False)
vs[i, j] = interp(sample).item()
v2 = np.expand_dims(vs, axis=0)
assert_allclose(v, v2, atol=1e-14, err_msg=method)
def test_nonscalar_values_linear_2D(self):
# Verify that non-scalar values work in the 2D fast path
method = 'linear'
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5),
(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), ]
rng = np.random.default_rng(1234)
trailing_points = (3, 4)
# NB: values has a `num_trailing_dims` trailing dimension
values = rng.random((6, 7, *trailing_points))
sample = rng.random(2) # a single sample point !
interp = RegularGridInterpolator(points, values, method=method,
bounds_error=False)
v = interp(sample)
# v has a single sample point *per entry in the trailing dimensions*
assert v.shape == (1, *trailing_points)
# check the values, too : manually loop over the trailing dimensions
vs = np.empty(values.shape[-2:])
for i in range(values.shape[-2]):
for j in range(values.shape[-1]):
interp = RegularGridInterpolator(points, values[..., i, j],
method=method,
bounds_error=False)
vs[i, j] = interp(sample).item()
v2 = np.expand_dims(vs, axis=0)
assert_allclose(v, v2, atol=1e-14, err_msg=method)
@pytest.mark.parametrize(
"dtype",
[np.float32, np.float64, np.complex64, np.complex128]
)
@pytest.mark.parametrize("xi_dtype", [np.float32, np.float64])
def test_float32_values(self, dtype, xi_dtype):
# regression test for gh-17718: values.dtype=float32 fails
def f(x, y):
return 2 * x**3 + 3 * y**2
x = np.linspace(1, 4, 11)
y = np.linspace(4, 7, 22)
xg, yg = np.meshgrid(x, y, indexing='ij', sparse=True)
data = f(xg, yg)
data = data.astype(dtype)
interp = RegularGridInterpolator((x, y), data)
pts = np.array([[2.1, 6.2],
[3.3, 5.2]], dtype=xi_dtype)
# the values here are just what the call returns; the test checks that
# that the call succeeds at all, instead of failing with cython not
# having a float32 kernel
assert_allclose(interp(pts), [134.10469388, 153.40069388], atol=1e-7)
def test_bad_solver(self):
x = np.linspace(0, 3, 7)
y = np.linspace(0, 3, 7)
xg, yg = np.meshgrid(x, y, indexing='ij', sparse=True)
data = xg + yg
# default method 'linear' does not accept 'solver'
with assert_raises(ValueError):
RegularGridInterpolator((x, y), data, solver=lambda x: x)
with assert_raises(TypeError):
# wrong solver interface
RegularGridInterpolator(
(x, y), data, method='slinear', solver=lambda x: x
)
with assert_raises(TypeError):
# unknown argument
RegularGridInterpolator(
(x, y), data, method='slinear', solver=lambda x: x, woof='woof'
)
with assert_raises(TypeError):
# unknown argument
RegularGridInterpolator(
(x, y), data, method='slinear', solver_args={'woof': 42}
)
class MyValue:
"""
Minimal indexable object
"""
def __init__(self, shape):
self.ndim = 2
self.shape = shape
self._v = np.arange(np.prod(shape)).reshape(shape)
def __getitem__(self, idx):
return self._v[idx]
def __array_interface__(self):
return None
def __array__(self, dtype=None, copy=None):
raise RuntimeError("No array representation")
class TestInterpN:
def _sample_2d_data(self):
x = np.array([.5, 2., 3., 4., 5.5, 6.])
y = np.array([.5, 2., 3., 4., 5.5, 6.])
z = np.array(
[
[1, 2, 1, 2, 1, 1],
[1, 2, 1, 2, 1, 1],
[1, 2, 3, 2, 1, 1],
[1, 2, 2, 2, 1, 1],
[1, 2, 1, 2, 1, 1],
[1, 2, 2, 2, 1, 1],
]
)
return x, y, z
def test_spline_2d(self):
x, y, z = self._sample_2d_data()
lut = RectBivariateSpline(x, y, z)
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
assert_array_almost_equal(interpn((x, y), z, xi, method="splinef2d"),
lut.ev(xi[:, 0], xi[:, 1]))
@parametrize_rgi_interp_methods
def test_list_input(self, method):
x, y, z = self._sample_2d_data()
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
v1 = interpn((x, y), z, xi, method=method)
v2 = interpn(
(x.tolist(), y.tolist()), z.tolist(), xi.tolist(), method=method
)
assert_allclose(v1, v2, err_msg=method)
def test_spline_2d_outofbounds(self):
x = np.array([.5, 2., 3., 4., 5.5])
y = np.array([.5, 2., 3., 4., 5.5])
z = np.array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
lut = RectBivariateSpline(x, y, z)
xi = np.array([[1, 2.3, 6.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, -4.0, 5.0, 1.0, 3]]).T
actual = interpn((x, y), z, xi, method="splinef2d",
bounds_error=False, fill_value=999.99)
expected = lut.ev(xi[:, 0], xi[:, 1])
expected[2:4] = 999.99
assert_array_almost_equal(actual, expected)
# no extrapolation for splinef2d
assert_raises(ValueError, interpn, (x, y), z, xi, method="splinef2d",
bounds_error=False, fill_value=None)
def _sample_4d_data(self):
points = [(0., .5, 1.)] * 2 + [(0., 5., 10.)] * 2
values = np.asarray([0., .5, 1.])
values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
return points, values
def test_linear_4d(self):
# create a 4-D grid of 3 points in each dimension
points, values = self._sample_4d_data()
interp_rg = RegularGridInterpolator(points, values)
sample = np.asarray([[0.1, 0.1, 10., 9.]])
wanted = interpn(points, values, sample, method="linear")
assert_array_almost_equal(interp_rg(sample), wanted)
def test_4d_linear_outofbounds(self):
# create a 4-D grid of 3 points in each dimension
points, values = self._sample_4d_data()
sample = np.asarray([[0.1, -0.1, 10.1, 9.]])
wanted = 999.99
actual = interpn(points, values, sample, method="linear",
bounds_error=False, fill_value=999.99)
assert_array_almost_equal(actual, wanted)
def test_nearest_4d(self):
# create a 4-D grid of 3 points in each dimension
points, values = self._sample_4d_data()
interp_rg = RegularGridInterpolator(points, values, method="nearest")
sample = np.asarray([[0.1, 0.1, 10., 9.]])
wanted = interpn(points, values, sample, method="nearest")
assert_array_almost_equal(interp_rg(sample), wanted)
def test_4d_nearest_outofbounds(self):
# create a 4-D grid of 3 points in each dimension
points, values = self._sample_4d_data()
sample = np.asarray([[0.1, -0.1, 10.1, 9.]])
wanted = 999.99
actual = interpn(points, values, sample, method="nearest",
bounds_error=False, fill_value=999.99)
assert_array_almost_equal(actual, wanted)
def test_xi_1d(self):
# verify that 1-D xi works as expected
points, values = self._sample_4d_data()
sample = np.asarray([0.1, 0.1, 10., 9.])
v1 = interpn(points, values, sample, bounds_error=False)
v2 = interpn(points, values, sample[None,:], bounds_error=False)
assert_allclose(v1, v2)
def test_xi_nd(self):
# verify that higher-d xi works as expected
points, values = self._sample_4d_data()
np.random.seed(1234)
sample = np.random.rand(2, 3, 4)
v1 = interpn(points, values, sample, method='nearest',
bounds_error=False)
assert_equal(v1.shape, (2, 3))
v2 = interpn(points, values, sample.reshape(-1, 4),
method='nearest', bounds_error=False)
assert_allclose(v1, v2.reshape(v1.shape))
@parametrize_rgi_interp_methods
def test_xi_broadcast(self, method):
# verify that the interpolators broadcast xi
x, y, values = self._sample_2d_data()
points = (x, y)
xi = np.linspace(0, 1, 2)
yi = np.linspace(0, 3, 3)
sample = (xi[:, None], yi[None, :])
v1 = interpn(points, values, sample, method=method, bounds_error=False)
assert_equal(v1.shape, (2, 3))
xx, yy = np.meshgrid(xi, yi)
sample = np.c_[xx.T.ravel(), yy.T.ravel()]
v2 = interpn(points, values, sample,
method=method, bounds_error=False)
assert_allclose(v1, v2.reshape(v1.shape))
@parametrize_rgi_interp_methods
def test_nonscalar_values(self, method):
if method == "quintic":
pytest.skip("Way too slow.")
# Verify that non-scalar valued values also works
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5)] * 2 + [
(0.0, 5.0, 10.0, 15.0, 20, 25.0)
] * 2
rng = np.random.default_rng(1234)
values = rng.random((6, 6, 6, 6, 8))
sample = rng.random((7, 3, 4))
v = interpn(points, values, sample, method=method,
bounds_error=False)
assert_equal(v.shape, (7, 3, 8), err_msg=method)
vs = [interpn(points, values[..., j], sample, method=method,
bounds_error=False) for j in range(8)]
v2 = np.array(vs).transpose(1, 2, 0)
assert_allclose(v, v2, atol=1e-14, err_msg=method)
@parametrize_rgi_interp_methods
def test_nonscalar_values_2(self, method):
if method in {"cubic", "quintic"}:
pytest.skip("Way too slow.")
# Verify that non-scalar valued values also work : use different
# lengths of axes to simplify tracing the internals
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5),
(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0),
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0),
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0, 47)]
rng = np.random.default_rng(1234)
trailing_points = (3, 2)
# NB: values has a `num_trailing_dims` trailing dimension
values = rng.random((6, 7, 8, 9, *trailing_points))
sample = rng.random(4) # a single sample point !
v = interpn(points, values, sample, method=method, bounds_error=False)
# v has a single sample point *per entry in the trailing dimensions*
assert v.shape == (1, *trailing_points)
# check the values, too : manually loop over the trailing dimensions
vs = [[
interpn(points, values[..., i, j], sample, method=method,
bounds_error=False) for i in range(values.shape[-2])
] for j in range(values.shape[-1])]
assert_allclose(v, np.asarray(vs).T, atol=1e-14, err_msg=method)
def test_non_scalar_values_splinef2d(self):
# Vector-valued splines supported with fitpack
points, values = self._sample_4d_data()
np.random.seed(1234)
values = np.random.rand(3, 3, 3, 3, 6)
sample = np.random.rand(7, 11, 4)
assert_raises(ValueError, interpn, points, values, sample,
method='splinef2d')
@parametrize_rgi_interp_methods
def test_complex(self, method):
if method == "pchip":
pytest.skip("pchip does not make sense for complex data")
x, y, values = self._sample_2d_data()
points = (x, y)
values = values - 2j*values
sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
v1 = interpn(points, values, sample, method=method)
v2r = interpn(points, values.real, sample, method=method)
v2i = interpn(points, values.imag, sample, method=method)
v2 = v2r + 1j*v2i
assert_allclose(v1, v2)
def test_complex_pchip(self):
# Complex-valued data deprecated for pchip
x, y, values = self._sample_2d_data()
points = (x, y)
values = values - 2j*values
sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
with pytest.deprecated_call(match='complex'):
interpn(points, values, sample, method='pchip')
def test_complex_spline2fd(self):
# Complex-valued data not supported by spline2fd
x, y, values = self._sample_2d_data()
points = (x, y)
values = values - 2j*values
sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
with assert_warns(ComplexWarning):
interpn(points, values, sample, method='splinef2d')
@pytest.mark.parametrize(
"method",
["linear", "nearest"]
)
def test_duck_typed_values(self, method):
x = np.linspace(0, 2, 5)
y = np.linspace(0, 1, 7)
values = MyValue((5, 7))
v1 = interpn((x, y), values, [0.4, 0.7], method=method)
v2 = interpn((x, y), values._v, [0.4, 0.7], method=method)
assert_allclose(v1, v2)
@parametrize_rgi_interp_methods
def test_matrix_input(self, method):
x = np.linspace(0, 2, 6)
y = np.linspace(0, 1, 7)
values = matrix(np.random.rand(6, 7))
sample = np.random.rand(3, 7, 2)
v1 = interpn((x, y), values, sample, method=method)
v2 = interpn((x, y), np.asarray(values), sample, method=method)
assert_allclose(v1, v2)
def test_length_one_axis(self):
# gh-5890, gh-9524 : length-1 axis is legal for method='linear'.
# Along the axis it's linear interpolation; away from the length-1
# axis, it's an extrapolation, so fill_value should be used.
values = np.array([[0.1, 1, 10]])
xi = np.array([[1, 2.2], [1, 3.2], [1, 3.8]])
res = interpn(([1], [2, 3, 4]), values, xi)
wanted = [0.9*0.2 + 0.1, # on [2, 3) it's 0.9*(x-2) + 0.1
9*0.2 + 1, # on [3, 4] it's 9*(x-3) + 1
9*0.8 + 1]
assert_allclose(res, wanted, atol=1e-15)
# check extrapolation
xi = np.array([[1.1, 2.2], [1.5, 3.2], [-2.3, 3.8]])
res = interpn(([1], [2, 3, 4]), values, xi,
bounds_error=False, fill_value=None)
assert_allclose(res, wanted, atol=1e-15)
def test_descending_points(self):
def value_func_4d(x, y, z, a):
return 2 * x ** 3 + 3 * y ** 2 - z - a
x1 = np.array([0, 1, 2, 3])
x2 = np.array([0, 10, 20, 30])
x3 = np.array([0, 10, 20, 30])
x4 = np.array([0, .1, .2, .30])
points = (x1, x2, x3, x4)
values = value_func_4d(
*np.meshgrid(*points, indexing='ij', sparse=True))
pts = (0.1, 0.3, np.transpose(np.linspace(0, 30, 4)),
np.linspace(0, 0.3, 4))
correct_result = interpn(points, values, pts)
x1_descend = x1[::-1]
x2_descend = x2[::-1]
x3_descend = x3[::-1]
x4_descend = x4[::-1]
points_shuffled = (x1_descend, x2_descend, x3_descend, x4_descend)
values_shuffled = value_func_4d(
*np.meshgrid(*points_shuffled, indexing='ij', sparse=True))
test_result = interpn(points_shuffled, values_shuffled, pts)
assert_array_equal(correct_result, test_result)
def test_invalid_points_order(self):
x = np.array([.5, 2., 0., 4., 5.5]) # not ascending or descending
y = np.array([.5, 2., 3., 4., 5.5])
z = np.array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
xi = np.array([[1, 2.3, 6.3, 0.5, 3.3, 1.2, 3],
[1, 3.3, 1.2, -4.0, 5.0, 1.0, 3]]).T
match = "must be strictly ascending or descending"
with pytest.raises(ValueError, match=match):
interpn((x, y), z, xi)
def test_invalid_xi_dimensions(self):
# https://github.com/scipy/scipy/issues/16519
points = [(0, 1)]
values = [0, 1]
xi = np.ones((1, 1, 3))
msg = ("The requested sample points xi have dimension 3, but this "
"RegularGridInterpolator has dimension 1")
with assert_raises(ValueError, match=msg):
interpn(points, values, xi)
def test_readonly_grid(self):
# https://github.com/scipy/scipy/issues/17716
x = np.linspace(0, 4, 5)
y = np.linspace(0, 5, 6)
z = np.linspace(0, 6, 7)
points = (x, y, z)
values = np.ones((5, 6, 7))
point = np.array([2.21, 3.12, 1.15])
for d in points:
d.flags.writeable = False
values.flags.writeable = False
point.flags.writeable = False
interpn(points, values, point)
RegularGridInterpolator(points, values)(point)
def test_2d_readonly_grid(self):
# https://github.com/scipy/scipy/issues/17716
# test special 2d case
x = np.linspace(0, 4, 5)
y = np.linspace(0, 5, 6)
points = (x, y)
values = np.ones((5, 6))
point = np.array([2.21, 3.12])
for d in points:
d.flags.writeable = False
values.flags.writeable = False
point.flags.writeable = False
interpn(points, values, point)
RegularGridInterpolator(points, values)(point)
def test_non_c_contiguous_grid(self):
# https://github.com/scipy/scipy/issues/17716
x = np.linspace(0, 4, 5)
x = np.vstack((x, np.empty_like(x))).T.copy()[:, 0]
assert not x.flags.c_contiguous
y = np.linspace(0, 5, 6)
z = np.linspace(0, 6, 7)
points = (x, y, z)
values = np.ones((5, 6, 7))
point = np.array([2.21, 3.12, 1.15])
interpn(points, values, point)
RegularGridInterpolator(points, values)(point)
@pytest.mark.parametrize("dtype", ['>f8', '<f8'])
def test_endianness(self, dtype):
# https://github.com/scipy/scipy/issues/17716
# test special 2d case
x = np.linspace(0, 4, 5, dtype=dtype)
y = np.linspace(0, 5, 6, dtype=dtype)
points = (x, y)
values = np.ones((5, 6), dtype=dtype)
point = np.array([2.21, 3.12], dtype=dtype)
interpn(points, values, point)
RegularGridInterpolator(points, values)(point)