ai-content-maker/.venv/Lib/site-packages/scipy/sparse/linalg/_isolve/iterative.py

1080 lines
35 KiB
Python

import warnings
import numpy as np
from scipy.sparse.linalg._interface import LinearOperator
from .utils import make_system
from scipy.linalg import get_lapack_funcs
from scipy._lib.deprecation import _NoValue, _deprecate_positional_args
__all__ = ['bicg', 'bicgstab', 'cg', 'cgs', 'gmres', 'qmr']
def _get_atol_rtol(name, b_norm, tol=_NoValue, atol=0., rtol=1e-5):
"""
A helper function to handle tolerance deprecations and normalization
"""
if tol is not _NoValue:
msg = (f"'scipy.sparse.linalg.{name}' keyword argument `tol` is "
"deprecated in favor of `rtol` and will be removed in SciPy "
"v1.14.0. Until then, if set, it will override `rtol`.")
warnings.warn(msg, category=DeprecationWarning, stacklevel=4)
rtol = float(tol) if tol is not None else rtol
if atol == 'legacy':
msg = (f"'scipy.sparse.linalg.{name}' called with `atol='legacy'`. "
"This behavior is deprecated and will result in an error in "
"SciPy v1.14.0. To preserve current behaviour, set `atol=0.0`.")
warnings.warn(msg, category=DeprecationWarning, stacklevel=4)
atol = 0
# this branch is only hit from gcrotmk/lgmres/tfqmr
if atol is None:
msg = (f"'scipy.sparse.linalg.{name}' called without specifying "
"`atol`. This behavior is deprecated and will result in an "
"error in SciPy v1.14.0. To preserve current behaviour, set "
"`atol=rtol`, or, to adopt the future default, set `atol=0.0`.")
warnings.warn(msg, category=DeprecationWarning, stacklevel=4)
atol = rtol
atol = max(float(atol), float(rtol) * float(b_norm))
return atol, rtol
@_deprecate_positional_args(version="1.14")
def bicg(A, b, x0=None, *, tol=_NoValue, maxiter=None, M=None, callback=None,
atol=0., rtol=1e-5):
"""Use BIConjugate Gradient iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` and ``A^T x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, ndarray, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
tol : float, optional, deprecated
.. deprecated:: 1.12.0
`bicg` keyword argument ``tol`` is deprecated in favor of ``rtol``
and will be removed in SciPy 1.14.0.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : parameter breakdown
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import bicg
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1.]])
>>> b = np.array([2., 4., -1.])
>>> x, exitCode = bicg(A, b, atol=1e-5)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
"""
A, M, x, b, postprocess = make_system(A, M, x0, b)
bnrm2 = np.linalg.norm(b)
atol, _ = _get_atol_rtol('bicg', bnrm2, tol, atol, rtol)
if bnrm2 == 0:
return postprocess(b), 0
n = len(b)
dotprod = np.vdot if np.iscomplexobj(x) else np.dot
if maxiter is None:
maxiter = n*10
matvec, rmatvec = A.matvec, A.rmatvec
psolve, rpsolve = M.matvec, M.rmatvec
rhotol = np.finfo(x.dtype.char).eps**2
# Dummy values to initialize vars, silence linter warnings
rho_prev, p, ptilde = None, None, None
r = b - matvec(x) if x.any() else b.copy()
rtilde = r.copy()
for iteration in range(maxiter):
if np.linalg.norm(r) < atol: # Are we done?
return postprocess(x), 0
z = psolve(r)
ztilde = rpsolve(rtilde)
# order matters in this dot product
rho_cur = dotprod(rtilde, z)
if np.abs(rho_cur) < rhotol: # Breakdown case
return postprocess, -10
if iteration > 0:
beta = rho_cur / rho_prev
p *= beta
p += z
ptilde *= beta.conj()
ptilde += ztilde
else: # First spin
p = z.copy()
ptilde = ztilde.copy()
q = matvec(p)
qtilde = rmatvec(ptilde)
rv = dotprod(ptilde, q)
if rv == 0:
return postprocess(x), -11
alpha = rho_cur / rv
x += alpha*p
r -= alpha*q
rtilde -= alpha.conj()*qtilde
rho_prev = rho_cur
if callback:
callback(x)
else: # for loop exhausted
# Return incomplete progress
return postprocess(x), maxiter
@_deprecate_positional_args(version="1.14")
def bicgstab(A, b, *, x0=None, tol=_NoValue, maxiter=None, M=None,
callback=None, atol=0., rtol=1e-5):
"""Use BIConjugate Gradient STABilized iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` and ``A^T x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, ndarray, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
tol : float, optional, deprecated
.. deprecated:: 1.12.0
`bicgstab` keyword argument ``tol`` is deprecated in favor of
``rtol`` and will be removed in SciPy 1.14.0.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : parameter breakdown
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import bicgstab
>>> R = np.array([[4, 2, 0, 1],
... [3, 0, 0, 2],
... [0, 1, 1, 1],
... [0, 2, 1, 0]])
>>> A = csc_matrix(R)
>>> b = np.array([-1, -0.5, -1, 2])
>>> x, exit_code = bicgstab(A, b, atol=1e-5)
>>> print(exit_code) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
"""
A, M, x, b, postprocess = make_system(A, M, x0, b)
bnrm2 = np.linalg.norm(b)
atol, _ = _get_atol_rtol('bicgstab', bnrm2, tol, atol, rtol)
if bnrm2 == 0:
return postprocess(b), 0
n = len(b)
dotprod = np.vdot if np.iscomplexobj(x) else np.dot
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
# These values make no sense but coming from original Fortran code
# sqrt might have been meant instead.
rhotol = np.finfo(x.dtype.char).eps**2
omegatol = rhotol
# Dummy values to initialize vars, silence linter warnings
rho_prev, omega, alpha, p, v = None, None, None, None, None
r = b - matvec(x) if x.any() else b.copy()
rtilde = r.copy()
for iteration in range(maxiter):
if np.linalg.norm(r) < atol: # Are we done?
return postprocess(x), 0
rho = dotprod(rtilde, r)
if np.abs(rho) < rhotol: # rho breakdown
return postprocess(x), -10
if iteration > 0:
if np.abs(omega) < omegatol: # omega breakdown
return postprocess(x), -11
beta = (rho / rho_prev) * (alpha / omega)
p -= omega*v
p *= beta
p += r
else: # First spin
s = np.empty_like(r)
p = r.copy()
phat = psolve(p)
v = matvec(phat)
rv = dotprod(rtilde, v)
if rv == 0:
return postprocess(x), -11
alpha = rho / rv
r -= alpha*v
s[:] = r[:]
if np.linalg.norm(s) < atol:
x += alpha*phat
return postprocess(x), 0
shat = psolve(s)
t = matvec(shat)
omega = dotprod(t, s) / dotprod(t, t)
x += alpha*phat
x += omega*shat
r -= omega*t
rho_prev = rho
if callback:
callback(x)
else: # for loop exhausted
# Return incomplete progress
return postprocess(x), maxiter
@_deprecate_positional_args(version="1.14")
def cg(A, b, x0=None, *, tol=_NoValue, maxiter=None, M=None, callback=None,
atol=0., rtol=1e-5):
"""Use Conjugate Gradient iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
``A`` must represent a hermitian, positive definite matrix.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, ndarray, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
tol : float, optional, deprecated
.. deprecated:: 1.12.0
`cg` keyword argument ``tol`` is deprecated in favor of ``rtol`` and
will be removed in SciPy 1.14.0.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import cg
>>> P = np.array([[4, 0, 1, 0],
... [0, 5, 0, 0],
... [1, 0, 3, 2],
... [0, 0, 2, 4]])
>>> A = csc_matrix(P)
>>> b = np.array([-1, -0.5, -1, 2])
>>> x, exit_code = cg(A, b, atol=1e-5)
>>> print(exit_code) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
"""
A, M, x, b, postprocess = make_system(A, M, x0, b)
bnrm2 = np.linalg.norm(b)
atol, _ = _get_atol_rtol('cg', bnrm2, tol, atol, rtol)
if bnrm2 == 0:
return postprocess(b), 0
n = len(b)
if maxiter is None:
maxiter = n*10
dotprod = np.vdot if np.iscomplexobj(x) else np.dot
matvec = A.matvec
psolve = M.matvec
r = b - matvec(x) if x.any() else b.copy()
# Dummy value to initialize var, silences warnings
rho_prev, p = None, None
for iteration in range(maxiter):
if np.linalg.norm(r) < atol: # Are we done?
return postprocess(x), 0
z = psolve(r)
rho_cur = dotprod(r, z)
if iteration > 0:
beta = rho_cur / rho_prev
p *= beta
p += z
else: # First spin
p = np.empty_like(r)
p[:] = z[:]
q = matvec(p)
alpha = rho_cur / dotprod(p, q)
x += alpha*p
r -= alpha*q
rho_prev = rho_cur
if callback:
callback(x)
else: # for loop exhausted
# Return incomplete progress
return postprocess(x), maxiter
@_deprecate_positional_args(version="1.14")
def cgs(A, b, x0=None, *, tol=_NoValue, maxiter=None, M=None, callback=None,
atol=0., rtol=1e-5):
"""Use Conjugate Gradient Squared iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}
The real-valued N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, ndarray, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
tol : float, optional, deprecated
.. deprecated:: 1.12.0
`cgs` keyword argument ``tol`` is deprecated in favor of ``rtol``
and will be removed in SciPy 1.14.0.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : parameter breakdown
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import cgs
>>> R = np.array([[4, 2, 0, 1],
... [3, 0, 0, 2],
... [0, 1, 1, 1],
... [0, 2, 1, 0]])
>>> A = csc_matrix(R)
>>> b = np.array([-1, -0.5, -1, 2])
>>> x, exit_code = cgs(A, b)
>>> print(exit_code) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
"""
A, M, x, b, postprocess = make_system(A, M, x0, b)
bnrm2 = np.linalg.norm(b)
atol, _ = _get_atol_rtol('cgs', bnrm2, tol, atol, rtol)
if bnrm2 == 0:
return postprocess(b), 0
n = len(b)
dotprod = np.vdot if np.iscomplexobj(x) else np.dot
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
rhotol = np.finfo(x.dtype.char).eps**2
r = b - matvec(x) if x.any() else b.copy()
rtilde = r.copy()
bnorm = np.linalg.norm(b)
if bnorm == 0:
bnorm = 1
# Dummy values to initialize vars, silence linter warnings
rho_prev, p, u, q = None, None, None, None
for iteration in range(maxiter):
rnorm = np.linalg.norm(r)
if rnorm < atol: # Are we done?
return postprocess(x), 0
rho_cur = dotprod(rtilde, r)
if np.abs(rho_cur) < rhotol: # Breakdown case
return postprocess, -10
if iteration > 0:
beta = rho_cur / rho_prev
# u = r + beta * q
# p = u + beta * (q + beta * p);
u[:] = r[:]
u += beta*q
p *= beta
p += q
p *= beta
p += u
else: # First spin
p = r.copy()
u = r.copy()
q = np.empty_like(r)
phat = psolve(p)
vhat = matvec(phat)
rv = dotprod(rtilde, vhat)
if rv == 0: # Dot product breakdown
return postprocess(x), -11
alpha = rho_cur / rv
q[:] = u[:]
q -= alpha*vhat
uhat = psolve(u + q)
x += alpha*uhat
# Due to numerical error build-up the actual residual is computed
# instead of the following two lines that were in the original
# FORTRAN templates, still using a single matvec.
# qhat = matvec(uhat)
# r -= alpha*qhat
r = b - matvec(x)
rho_prev = rho_cur
if callback:
callback(x)
else: # for loop exhausted
# Return incomplete progress
return postprocess(x), maxiter
@_deprecate_positional_args(version="1.14")
def gmres(A, b, x0=None, *, tol=_NoValue, restart=None, maxiter=None, M=None,
callback=None, restrt=_NoValue, atol=0., callback_type=None,
rtol=1e-5):
"""
Use Generalized Minimal RESidual iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution (a vector of zeros by default).
atol, rtol : float
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
restart : int, optional
Number of iterations between restarts. Larger values increase
iteration cost, but may be necessary for convergence.
If omitted, ``min(20, n)`` is used.
maxiter : int, optional
Maximum number of iterations (restart cycles). Iteration will stop
after maxiter steps even if the specified tolerance has not been
achieved. See `callback_type`.
M : {sparse matrix, ndarray, LinearOperator}
Inverse of the preconditioner of A. M should approximate the
inverse of A and be easy to solve for (see Notes). Effective
preconditioning dramatically improves the rate of convergence,
which implies that fewer iterations are needed to reach a given
error tolerance. By default, no preconditioner is used.
In this implementation, left preconditioning is used,
and the preconditioned residual is minimized. However, the final
convergence is tested with respect to the ``b - A @ x`` residual.
callback : function
User-supplied function to call after each iteration. It is called
as `callback(args)`, where `args` are selected by `callback_type`.
callback_type : {'x', 'pr_norm', 'legacy'}, optional
Callback function argument requested:
- ``x``: current iterate (ndarray), called on every restart
- ``pr_norm``: relative (preconditioned) residual norm (float),
called on every inner iteration
- ``legacy`` (default): same as ``pr_norm``, but also changes the
meaning of `maxiter` to count inner iterations instead of restart
cycles.
This keyword has no effect if `callback` is not set.
restrt : int, optional, deprecated
.. deprecated:: 0.11.0
`gmres` keyword argument ``restrt`` is deprecated in favor of
``restart`` and will be removed in SciPy 1.14.0.
tol : float, optional, deprecated
.. deprecated:: 1.12.0
`gmres` keyword argument ``tol`` is deprecated in favor of ``rtol``
and will be removed in SciPy 1.14.0
Returns
-------
x : ndarray
The converged solution.
info : int
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
See Also
--------
LinearOperator
Notes
-----
A preconditioner, P, is chosen such that P is close to A but easy to solve
for. The preconditioner parameter required by this routine is
``M = P^-1``. The inverse should preferably not be calculated
explicitly. Rather, use the following template to produce M::
# Construct a linear operator that computes P^-1 @ x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import gmres
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = gmres(A, b, atol=1e-5)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
"""
# Handle the deprecation frenzy
if restrt not in (None, _NoValue) and restart:
raise ValueError("Cannot specify both 'restart' and 'restrt'"
" keywords. Also 'rstrt' is deprecated."
" and will be removed in SciPy 1.14.0. Use "
"'restart' instead.")
if restrt is not _NoValue:
msg = ("'gmres' keyword argument 'restrt' is deprecated "
"in favor of 'restart' and will be removed in SciPy"
" 1.14.0. Until then, if set, 'rstrt' will override 'restart'."
)
warnings.warn(msg, DeprecationWarning, stacklevel=3)
restart = restrt
if callback is not None and callback_type is None:
# Warn about 'callback_type' semantic changes.
# Probably should be removed only in far future, Scipy 2.0 or so.
msg = ("scipy.sparse.linalg.gmres called without specifying "
"`callback_type`. The default value will be changed in"
" a future release. For compatibility, specify a value "
"for `callback_type` explicitly, e.g., "
"``gmres(..., callback_type='pr_norm')``, or to retain the "
"old behavior ``gmres(..., callback_type='legacy')``"
)
warnings.warn(msg, category=DeprecationWarning, stacklevel=3)
if callback_type is None:
callback_type = 'legacy'
if callback_type not in ('x', 'pr_norm', 'legacy'):
raise ValueError(f"Unknown callback_type: {callback_type!r}")
if callback is None:
callback_type = None
A, M, x, b, postprocess = make_system(A, M, x0, b)
matvec = A.matvec
psolve = M.matvec
n = len(b)
bnrm2 = np.linalg.norm(b)
atol, _ = _get_atol_rtol('gmres', bnrm2, tol, atol, rtol)
if bnrm2 == 0:
return postprocess(b), 0
eps = np.finfo(x.dtype.char).eps
dotprod = np.vdot if np.iscomplexobj(x) else np.dot
if maxiter is None:
maxiter = n*10
if restart is None:
restart = 20
restart = min(restart, n)
Mb_nrm2 = np.linalg.norm(psolve(b))
# ====================================================
# =========== Tolerance control from gh-8400 =========
# ====================================================
# Tolerance passed to GMRESREVCOM applies to the inner
# iteration and deals with the left-preconditioned
# residual.
ptol_max_factor = 1.
ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
presid = 0.
# ====================================================
lartg = get_lapack_funcs('lartg', dtype=x.dtype)
# allocate internal variables
v = np.empty([restart+1, n], dtype=x.dtype)
h = np.zeros([restart, restart+1], dtype=x.dtype)
givens = np.zeros([restart, 2], dtype=x.dtype)
# legacy iteration count
inner_iter = 0
for iteration in range(maxiter):
if iteration == 0:
r = b - matvec(x) if x.any() else b.copy()
if np.linalg.norm(r) < atol: # Are we done?
return postprocess(x), 0
v[0, :] = psolve(r)
tmp = np.linalg.norm(v[0, :])
v[0, :] *= (1 / tmp)
# RHS of the Hessenberg problem
S = np.zeros(restart+1, dtype=x.dtype)
S[0] = tmp
breakdown = False
for col in range(restart):
av = matvec(v[col, :])
w = psolve(av)
# Modified Gram-Schmidt
h0 = np.linalg.norm(w)
for k in range(col+1):
tmp = dotprod(v[k, :], w)
h[col, k] = tmp
w -= tmp*v[k, :]
h1 = np.linalg.norm(w)
h[col, col + 1] = h1
v[col + 1, :] = w[:]
# Exact solution indicator
if h1 <= eps*h0:
h[col, col + 1] = 0
breakdown = True
else:
v[col + 1, :] *= (1 / h1)
# apply past Givens rotations to current h column
for k in range(col):
c, s = givens[k, 0], givens[k, 1]
n0, n1 = h[col, [k, k+1]]
h[col, [k, k + 1]] = [c*n0 + s*n1, -s.conj()*n0 + c*n1]
# get and apply current rotation to h and S
c, s, mag = lartg(h[col, col], h[col, col+1])
givens[col, :] = [c, s]
h[col, [col, col+1]] = mag, 0
# S[col+1] component is always 0
tmp = -np.conjugate(s)*S[col]
S[[col, col + 1]] = [c*S[col], tmp]
presid = np.abs(tmp)
inner_iter += 1
if callback_type in ('legacy', 'pr_norm'):
callback(presid / bnrm2)
# Legacy behavior
if callback_type == 'legacy' and inner_iter == maxiter:
break
if presid <= ptol or breakdown:
break
# Solve h(col, col) upper triangular system and allow pseudo-solve
# singular cases as in (but without the f2py copies):
# y = trsv(h[:col+1, :col+1].T, S[:col+1])
if h[col, col] == 0:
S[col] = 0
y = np.zeros([col+1], dtype=x.dtype)
y[:] = S[:col+1]
for k in range(col, 0, -1):
if y[k] != 0:
y[k] /= h[k, k]
tmp = y[k]
y[:k] -= tmp*h[k, :k]
if y[0] != 0:
y[0] /= h[0, 0]
x += y @ v[:col+1, :]
r = b - matvec(x)
rnorm = np.linalg.norm(r)
# Legacy exit
if callback_type == 'legacy' and inner_iter == maxiter:
return postprocess(x), 0 if rnorm <= atol else maxiter
if callback_type == 'x':
callback(x)
if rnorm <= atol:
break
elif breakdown:
# Reached breakdown (= exact solution), but the external
# tolerance check failed. Bail out with failure.
break
elif presid <= ptol:
# Inner loop passed but outer didn't
ptol_max_factor = max(eps, 0.25 * ptol_max_factor)
else:
ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
ptol = presid * min(ptol_max_factor, atol / rnorm)
info = 0 if (rnorm <= atol) else maxiter
return postprocess(x), info
@_deprecate_positional_args(version="1.14")
def qmr(A, b, x0=None, *, tol=_NoValue, maxiter=None, M1=None, M2=None,
callback=None, atol=0., rtol=1e-5):
"""Use Quasi-Minimal Residual iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse matrix, ndarray, LinearOperator}
The real-valued N-by-N matrix of the linear system.
Alternatively, ``A`` can be a linear operator which can
produce ``Ax`` and ``A^T x`` using, e.g.,
``scipy.sparse.linalg.LinearOperator``.
b : ndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : ndarray
Starting guess for the solution.
atol, rtol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``atol=0.`` and ``rtol=1e-5``.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M1 : {sparse matrix, ndarray, LinearOperator}
Left preconditioner for A.
M2 : {sparse matrix, ndarray, LinearOperator}
Right preconditioner for A. Used together with the left
preconditioner M1. The matrix M1@A@M2 should have better
conditioned than A alone.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
tol : float, optional, deprecated
.. deprecated:: 1.12.0
`qmr` keyword argument ``tol`` is deprecated in favor of ``rtol``
and will be removed in SciPy 1.14.0.
Returns
-------
x : ndarray
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : parameter breakdown
See Also
--------
LinearOperator
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import qmr
>>> A = csc_matrix([[3., 2., 0.], [1., -1., 0.], [0., 5., 1.]])
>>> b = np.array([2., 4., -1.])
>>> x, exitCode = qmr(A, b, atol=1e-5)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
"""
A_ = A
A, M, x, b, postprocess = make_system(A, None, x0, b)
bnrm2 = np.linalg.norm(b)
atol, _ = _get_atol_rtol('qmr', bnrm2, tol, atol, rtol)
if bnrm2 == 0:
return postprocess(b), 0
if M1 is None and M2 is None:
if hasattr(A_, 'psolve'):
def left_psolve(b):
return A_.psolve(b, 'left')
def right_psolve(b):
return A_.psolve(b, 'right')
def left_rpsolve(b):
return A_.rpsolve(b, 'left')
def right_rpsolve(b):
return A_.rpsolve(b, 'right')
M1 = LinearOperator(A.shape,
matvec=left_psolve,
rmatvec=left_rpsolve)
M2 = LinearOperator(A.shape,
matvec=right_psolve,
rmatvec=right_rpsolve)
else:
def id(b):
return b
M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)
n = len(b)
if maxiter is None:
maxiter = n*10
dotprod = np.vdot if np.iscomplexobj(x) else np.dot
rhotol = np.finfo(x.dtype.char).eps
betatol = rhotol
gammatol = rhotol
deltatol = rhotol
epsilontol = rhotol
xitol = rhotol
r = b - A.matvec(x) if x.any() else b.copy()
vtilde = r.copy()
y = M1.matvec(vtilde)
rho = np.linalg.norm(y)
wtilde = r.copy()
z = M2.rmatvec(wtilde)
xi = np.linalg.norm(z)
gamma, eta, theta = 1, -1, 0
v = np.empty_like(vtilde)
w = np.empty_like(wtilde)
# Dummy values to initialize vars, silence linter warnings
epsilon, q, d, p, s = None, None, None, None, None
for iteration in range(maxiter):
if np.linalg.norm(r) < atol: # Are we done?
return postprocess(x), 0
if np.abs(rho) < rhotol: # rho breakdown
return postprocess(x), -10
if np.abs(xi) < xitol: # xi breakdown
return postprocess(x), -15
v[:] = vtilde[:]
v *= (1 / rho)
y *= (1 / rho)
w[:] = wtilde[:]
w *= (1 / xi)
z *= (1 / xi)
delta = dotprod(z, y)
if np.abs(delta) < deltatol: # delta breakdown
return postprocess(x), -13
ytilde = M2.matvec(y)
ztilde = M1.rmatvec(z)
if iteration > 0:
ytilde -= (xi * delta / epsilon) * p
p[:] = ytilde[:]
ztilde -= (rho * (delta / epsilon).conj()) * q
q[:] = ztilde[:]
else: # First spin
p = ytilde.copy()
q = ztilde.copy()
ptilde = A.matvec(p)
epsilon = dotprod(q, ptilde)
if np.abs(epsilon) < epsilontol: # epsilon breakdown
return postprocess(x), -14
beta = epsilon / delta
if np.abs(beta) < betatol: # beta breakdown
return postprocess(x), -11
vtilde[:] = ptilde[:]
vtilde -= beta*v
y = M1.matvec(vtilde)
rho_prev = rho
rho = np.linalg.norm(y)
wtilde[:] = w[:]
wtilde *= - beta.conj()
wtilde += A.rmatvec(q)
z = M2.rmatvec(wtilde)
xi = np.linalg.norm(z)
gamma_prev = gamma
theta_prev = theta
theta = rho / (gamma_prev * np.abs(beta))
gamma = 1 / np.sqrt(1 + theta**2)
if np.abs(gamma) < gammatol: # gamma breakdown
return postprocess(x), -12
eta *= -(rho_prev / beta) * (gamma / gamma_prev)**2
if iteration > 0:
d *= (theta_prev * gamma) ** 2
d += eta*p
s *= (theta_prev * gamma) ** 2
s += eta*ptilde
else:
d = p.copy()
d *= eta
s = ptilde.copy()
s *= eta
x += d
r -= s
if callback:
callback(x)
else: # for loop exhausted
# Return incomplete progress
return postprocess(x), maxiter