ai-content-maker/.venv/Lib/site-packages/scipy/sparse/linalg/_svdp.py

316 lines
11 KiB
Python

"""
Python wrapper for PROPACK
--------------------------
PROPACK is a collection of Fortran routines for iterative computation
of partial SVDs of large matrices or linear operators.
Based on BSD licensed pypropack project:
http://github.com/jakevdp/pypropack
Author: Jake Vanderplas <vanderplas@astro.washington.edu>
PROPACK source is BSD licensed, and available at
http://soi.stanford.edu/~rmunk/PROPACK/
"""
__all__ = ['_svdp']
import numpy as np
from scipy._lib._util import check_random_state
from scipy.sparse.linalg import aslinearoperator
from scipy.linalg import LinAlgError
from ._propack import _spropack # type: ignore[attr-defined]
from ._propack import _dpropack # type: ignore[attr-defined]
from ._propack import _cpropack # type: ignore[attr-defined]
from ._propack import _zpropack # type: ignore[attr-defined]
_lansvd_dict = {
'f': _spropack.slansvd,
'd': _dpropack.dlansvd,
'F': _cpropack.clansvd,
'D': _zpropack.zlansvd,
}
_lansvd_irl_dict = {
'f': _spropack.slansvd_irl,
'd': _dpropack.dlansvd_irl,
'F': _cpropack.clansvd_irl,
'D': _zpropack.zlansvd_irl,
}
_which_converter = {
'LM': 'L',
'SM': 'S',
}
class _AProd:
"""
Wrapper class for linear operator
The call signature of the __call__ method matches the callback of
the PROPACK routines.
"""
def __init__(self, A):
try:
self.A = aslinearoperator(A)
except TypeError:
self.A = aslinearoperator(np.asarray(A))
def __call__(self, transa, m, n, x, y, sparm, iparm):
if transa == 'n':
y[:] = self.A.matvec(x)
else:
y[:] = self.A.rmatvec(x)
@property
def shape(self):
return self.A.shape
@property
def dtype(self):
try:
return self.A.dtype
except AttributeError:
return self.A.matvec(np.zeros(self.A.shape[1])).dtype
def _svdp(A, k, which='LM', irl_mode=True, kmax=None,
compute_u=True, compute_v=True, v0=None, full_output=False, tol=0,
delta=None, eta=None, anorm=0, cgs=False, elr=True,
min_relgap=0.002, shifts=None, maxiter=None, random_state=None):
"""
Compute the singular value decomposition of a linear operator using PROPACK
Parameters
----------
A : array_like, sparse matrix, or LinearOperator
Operator for which SVD will be computed. If `A` is a LinearOperator
object, it must define both ``matvec`` and ``rmatvec`` methods.
k : int
Number of singular values/vectors to compute
which : {"LM", "SM"}
Which singular triplets to compute:
- 'LM': compute triplets corresponding to the `k` largest singular
values
- 'SM': compute triplets corresponding to the `k` smallest singular
values
`which='SM'` requires `irl_mode=True`. Computes largest singular
values by default.
irl_mode : bool, optional
If `True`, then compute SVD using IRL (implicitly restarted Lanczos)
mode. Default is `True`.
kmax : int, optional
Maximal number of iterations / maximal dimension of the Krylov
subspace. Default is ``10 * k``.
compute_u : bool, optional
If `True` (default) then compute left singular vectors, `u`.
compute_v : bool, optional
If `True` (default) then compute right singular vectors, `v`.
tol : float, optional
The desired relative accuracy for computed singular values.
If not specified, it will be set based on machine precision.
v0 : array_like, optional
Starting vector for iterations: must be of length ``A.shape[0]``.
If not specified, PROPACK will generate a starting vector.
full_output : bool, optional
If `True`, then return sigma_bound. Default is `False`.
delta : float, optional
Level of orthogonality to maintain between Lanczos vectors.
Default is set based on machine precision.
eta : float, optional
Orthogonality cutoff. During reorthogonalization, vectors with
component larger than `eta` along the Lanczos vector will be purged.
Default is set based on machine precision.
anorm : float, optional
Estimate of ``||A||``. Default is `0`.
cgs : bool, optional
If `True`, reorthogonalization is done using classical Gram-Schmidt.
If `False` (default), it is done using modified Gram-Schmidt.
elr : bool, optional
If `True` (default), then extended local orthogonality is enforced
when obtaining singular vectors.
min_relgap : float, optional
The smallest relative gap allowed between any shift in IRL mode.
Default is `0.001`. Accessed only if ``irl_mode=True``.
shifts : int, optional
Number of shifts per restart in IRL mode. Default is determined
to satisfy ``k <= min(kmax-shifts, m, n)``. Must be
>= 0, but choosing 0 might lead to performance degradation.
Accessed only if ``irl_mode=True``.
maxiter : int, optional
Maximum number of restarts in IRL mode. Default is `1000`.
Accessed only if ``irl_mode=True``.
random_state : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
Pseudorandom number generator state used to generate resamples.
If `random_state` is ``None`` (or `np.random`), the
`numpy.random.RandomState` singleton is used.
If `random_state` is an int, a new ``RandomState`` instance is used,
seeded with `random_state`.
If `random_state` is already a ``Generator`` or ``RandomState``
instance then that instance is used.
Returns
-------
u : ndarray
The `k` largest (``which="LM"``) or smallest (``which="SM"``) left
singular vectors, ``shape == (A.shape[0], 3)``, returned only if
``compute_u=True``.
sigma : ndarray
The top `k` singular values, ``shape == (k,)``
vt : ndarray
The `k` largest (``which="LM"``) or smallest (``which="SM"``) right
singular vectors, ``shape == (3, A.shape[1])``, returned only if
``compute_v=True``.
sigma_bound : ndarray
the error bounds on the singular values sigma, returned only if
``full_output=True``.
"""
random_state = check_random_state(random_state)
which = which.upper()
if which not in {'LM', 'SM'}:
raise ValueError("`which` must be either 'LM' or 'SM'")
if not irl_mode and which == 'SM':
raise ValueError("`which`='SM' requires irl_mode=True")
aprod = _AProd(A)
typ = aprod.dtype.char
try:
lansvd_irl = _lansvd_irl_dict[typ]
lansvd = _lansvd_dict[typ]
except KeyError:
# work with non-supported types using native system precision
if np.iscomplexobj(np.empty(0, dtype=typ)):
typ = np.dtype(complex).char
else:
typ = np.dtype(float).char
lansvd_irl = _lansvd_irl_dict[typ]
lansvd = _lansvd_dict[typ]
m, n = aprod.shape
if (k < 1) or (k > min(m, n)):
raise ValueError("k must be positive and not greater than m or n")
if kmax is None:
kmax = 10*k
if maxiter is None:
maxiter = 1000
# guard against unnecessarily large kmax
kmax = min(m + 1, n + 1, kmax)
if kmax < k:
raise ValueError(
"kmax must be greater than or equal to k, "
f"but kmax ({kmax}) < k ({k})")
# convert python args to fortran args
jobu = 'y' if compute_u else 'n'
jobv = 'y' if compute_v else 'n'
# these will be the output arrays
u = np.zeros((m, kmax + 1), order='F', dtype=typ)
v = np.zeros((n, kmax), order='F', dtype=typ)
# Specify the starting vector. if v0 is all zero, PROPACK will generate
# a random starting vector: the random seed cannot be controlled in that
# case, so we'll instead use numpy to generate a random vector
if v0 is None:
u[:, 0] = random_state.uniform(size=m)
if np.iscomplexobj(np.empty(0, dtype=typ)): # complex type
u[:, 0] += 1j * random_state.uniform(size=m)
else:
try:
u[:, 0] = v0
except ValueError:
raise ValueError(f"v0 must be of length {m}")
# process options for the fit
if delta is None:
delta = np.sqrt(np.finfo(typ).eps)
if eta is None:
eta = np.finfo(typ).eps ** 0.75
if irl_mode:
doption = np.array((delta, eta, anorm, min_relgap), dtype=typ.lower())
# validate or find default shifts
if shifts is None:
shifts = kmax - k
if k > min(kmax - shifts, m, n):
raise ValueError('shifts must satisfy '
'k <= min(kmax-shifts, m, n)!')
elif shifts < 0:
raise ValueError('shifts must be >= 0!')
else:
doption = np.array((delta, eta, anorm), dtype=typ.lower())
ioption = np.array((int(bool(cgs)), int(bool(elr))), dtype='i')
# If computing `u` or `v` (left and right singular vectors,
# respectively), `blocksize` controls how large a fraction of the
# work is done via fast BLAS level 3 operations. A larger blocksize
# may lead to faster computation at the expense of greater memory
# consumption. `blocksize` must be ``>= 1``. Choosing blocksize
# of 16, but docs don't specify; it's almost surely a
# power of 2.
blocksize = 16
# Determine lwork & liwork:
# the required lengths are specified in the PROPACK documentation
if compute_u or compute_v:
lwork = m + n + 9*kmax + 5*kmax*kmax + 4 + max(
3*kmax*kmax + 4*kmax + 4,
blocksize*max(m, n))
liwork = 8*kmax
else:
lwork = m + n + 9*kmax + 2*kmax*kmax + 4 + max(m + n, 4*kmax + 4)
liwork = 2*kmax + 1
work = np.empty(lwork, dtype=typ.lower())
iwork = np.empty(liwork, dtype=np.int32)
# dummy arguments: these are passed to aprod, and not used in this wrapper
dparm = np.empty(1, dtype=typ.lower())
iparm = np.empty(1, dtype=np.int32)
if typ.isupper():
# PROPACK documentation is unclear on the required length of zwork.
# Use the same length Julia's wrapper uses
# see https://github.com/JuliaSmoothOptimizers/PROPACK.jl/
zwork = np.empty(m + n + 32*m, dtype=typ)
works = work, zwork, iwork
else:
works = work, iwork
if irl_mode:
u, sigma, bnd, v, info = lansvd_irl(_which_converter[which], jobu,
jobv, m, n, shifts, k, maxiter,
aprod, u, v, tol, *works, doption,
ioption, dparm, iparm)
else:
u, sigma, bnd, v, info = lansvd(jobu, jobv, m, n, k, aprod, u, v, tol,
*works, doption, ioption, dparm, iparm)
if info > 0:
raise LinAlgError(
f"An invariant subspace of dimension {info} was found.")
elif info < 0:
raise LinAlgError(
f"k={k} singular triplets did not converge within "
f"kmax={kmax} iterations")
# info == 0: The K largest (or smallest) singular triplets were computed
# successfully!
return u[:, :k], sigma, v[:, :k].conj().T, bnd