ai-content-maker/.venv/Lib/site-packages/scipy/stats/tests/test_discrete_distns.py

630 lines
22 KiB
Python

import pytest
import itertools
from scipy.stats import (betabinom, betanbinom, hypergeom, nhypergeom,
bernoulli, boltzmann, skellam, zipf, zipfian, binom,
nbinom, nchypergeom_fisher, nchypergeom_wallenius,
randint)
import numpy as np
from numpy.testing import (
assert_almost_equal, assert_equal, assert_allclose, suppress_warnings
)
from scipy.special import binom as special_binom
from scipy.optimize import root_scalar
from scipy.integrate import quad
# The expected values were computed with Wolfram Alpha, using
# the expression CDF[HypergeometricDistribution[N, n, M], k].
@pytest.mark.parametrize('k, M, n, N, expected, rtol',
[(3, 10, 4, 5,
0.9761904761904762, 1e-15),
(107, 10000, 3000, 215,
0.9999999997226765, 1e-15),
(10, 10000, 3000, 215,
2.681682217692179e-21, 5e-11)])
def test_hypergeom_cdf(k, M, n, N, expected, rtol):
p = hypergeom.cdf(k, M, n, N)
assert_allclose(p, expected, rtol=rtol)
# The expected values were computed with Wolfram Alpha, using
# the expression SurvivalFunction[HypergeometricDistribution[N, n, M], k].
@pytest.mark.parametrize('k, M, n, N, expected, rtol',
[(25, 10000, 3000, 215,
0.9999999999052958, 1e-15),
(125, 10000, 3000, 215,
1.4416781705752128e-18, 5e-11)])
def test_hypergeom_sf(k, M, n, N, expected, rtol):
p = hypergeom.sf(k, M, n, N)
assert_allclose(p, expected, rtol=rtol)
def test_hypergeom_logpmf():
# symmetries test
# f(k,N,K,n) = f(n-k,N,N-K,n) = f(K-k,N,K,N-n) = f(k,N,n,K)
k = 5
N = 50
K = 10
n = 5
logpmf1 = hypergeom.logpmf(k, N, K, n)
logpmf2 = hypergeom.logpmf(n - k, N, N - K, n)
logpmf3 = hypergeom.logpmf(K - k, N, K, N - n)
logpmf4 = hypergeom.logpmf(k, N, n, K)
assert_almost_equal(logpmf1, logpmf2, decimal=12)
assert_almost_equal(logpmf1, logpmf3, decimal=12)
assert_almost_equal(logpmf1, logpmf4, decimal=12)
# test related distribution
# Bernoulli distribution if n = 1
k = 1
N = 10
K = 7
n = 1
hypergeom_logpmf = hypergeom.logpmf(k, N, K, n)
bernoulli_logpmf = bernoulli.logpmf(k, K/N)
assert_almost_equal(hypergeom_logpmf, bernoulli_logpmf, decimal=12)
def test_nhypergeom_pmf():
# test with hypergeom
M, n, r = 45, 13, 8
k = 6
NHG = nhypergeom.pmf(k, M, n, r)
HG = hypergeom.pmf(k, M, n, k+r-1) * (M - n - (r-1)) / (M - (k+r-1))
assert_allclose(HG, NHG, rtol=1e-10)
def test_nhypergeom_pmfcdf():
# test pmf and cdf with arbitrary values.
M = 8
n = 3
r = 4
support = np.arange(n+1)
pmf = nhypergeom.pmf(support, M, n, r)
cdf = nhypergeom.cdf(support, M, n, r)
assert_allclose(pmf, [1/14, 3/14, 5/14, 5/14], rtol=1e-13)
assert_allclose(cdf, [1/14, 4/14, 9/14, 1.0], rtol=1e-13)
def test_nhypergeom_r0():
# test with `r = 0`.
M = 10
n = 3
r = 0
pmf = nhypergeom.pmf([[0, 1, 2, 0], [1, 2, 0, 3]], M, n, r)
assert_allclose(pmf, [[1, 0, 0, 1], [0, 0, 1, 0]], rtol=1e-13)
def test_nhypergeom_rvs_shape():
# Check that when given a size with more dimensions than the
# dimensions of the broadcast parameters, rvs returns an array
# with the correct shape.
x = nhypergeom.rvs(22, [7, 8, 9], [[12], [13]], size=(5, 1, 2, 3))
assert x.shape == (5, 1, 2, 3)
def test_nhypergeom_accuracy():
# Check that nhypergeom.rvs post-gh-13431 gives the same values as
# inverse transform sampling
np.random.seed(0)
x = nhypergeom.rvs(22, 7, 11, size=100)
np.random.seed(0)
p = np.random.uniform(size=100)
y = nhypergeom.ppf(p, 22, 7, 11)
assert_equal(x, y)
def test_boltzmann_upper_bound():
k = np.arange(-3, 5)
N = 1
p = boltzmann.pmf(k, 0.123, N)
expected = k == 0
assert_equal(p, expected)
lam = np.log(2)
N = 3
p = boltzmann.pmf(k, lam, N)
expected = [0, 0, 0, 4/7, 2/7, 1/7, 0, 0]
assert_allclose(p, expected, rtol=1e-13)
c = boltzmann.cdf(k, lam, N)
expected = [0, 0, 0, 4/7, 6/7, 1, 1, 1]
assert_allclose(c, expected, rtol=1e-13)
def test_betabinom_a_and_b_unity():
# test limiting case that betabinom(n, 1, 1) is a discrete uniform
# distribution from 0 to n
n = 20
k = np.arange(n + 1)
p = betabinom(n, 1, 1).pmf(k)
expected = np.repeat(1 / (n + 1), n + 1)
assert_almost_equal(p, expected)
@pytest.mark.parametrize('dtypes', itertools.product(*[(int, float)]*3))
def test_betabinom_stats_a_and_b_integers_gh18026(dtypes):
# gh-18026 reported that `betabinom` kurtosis calculation fails when some
# parameters are integers. Check that this is resolved.
n_type, a_type, b_type = dtypes
n, a, b = n_type(10), a_type(2), b_type(3)
assert_allclose(betabinom.stats(n, a, b, moments='k'), -0.6904761904761907)
def test_betabinom_bernoulli():
# test limiting case that betabinom(1, a, b) = bernoulli(a / (a + b))
a = 2.3
b = 0.63
k = np.arange(2)
p = betabinom(1, a, b).pmf(k)
expected = bernoulli(a / (a + b)).pmf(k)
assert_almost_equal(p, expected)
def test_issue_10317():
alpha, n, p = 0.9, 10, 1
assert_equal(nbinom.interval(confidence=alpha, n=n, p=p), (0, 0))
def test_issue_11134():
alpha, n, p = 0.95, 10, 0
assert_equal(binom.interval(confidence=alpha, n=n, p=p), (0, 0))
def test_issue_7406():
np.random.seed(0)
assert_equal(binom.ppf(np.random.rand(10), 0, 0.5), 0)
# Also check that endpoints (q=0, q=1) are correct
assert_equal(binom.ppf(0, 0, 0.5), -1)
assert_equal(binom.ppf(1, 0, 0.5), 0)
def test_issue_5122():
p = 0
n = np.random.randint(100, size=10)
x = 0
ppf = binom.ppf(x, n, p)
assert_equal(ppf, -1)
x = np.linspace(0.01, 0.99, 10)
ppf = binom.ppf(x, n, p)
assert_equal(ppf, 0)
x = 1
ppf = binom.ppf(x, n, p)
assert_equal(ppf, n)
def test_issue_1603():
assert_equal(binom(1000, np.logspace(-3, -100)).ppf(0.01), 0)
def test_issue_5503():
p = 0.5
x = np.logspace(3, 14, 12)
assert_allclose(binom.cdf(x, 2*x, p), 0.5, atol=1e-2)
@pytest.mark.parametrize('x, n, p, cdf_desired', [
(300, 1000, 3/10, 0.51559351981411995636),
(3000, 10000, 3/10, 0.50493298381929698016),
(30000, 100000, 3/10, 0.50156000591726422864),
(300000, 1000000, 3/10, 0.50049331906666960038),
(3000000, 10000000, 3/10, 0.50015600124585261196),
(30000000, 100000000, 3/10, 0.50004933192735230102),
(30010000, 100000000, 3/10, 0.98545384016570790717),
(29990000, 100000000, 3/10, 0.01455017177985268670),
(29950000, 100000000, 3/10, 5.02250963487432024943e-28),
])
def test_issue_5503pt2(x, n, p, cdf_desired):
assert_allclose(binom.cdf(x, n, p), cdf_desired)
def test_issue_5503pt3():
# From Wolfram Alpha: CDF[BinomialDistribution[1e12, 1e-12], 2]
assert_allclose(binom.cdf(2, 10**12, 10**-12), 0.91969860292869777384)
def test_issue_6682():
# Reference value from R:
# options(digits=16)
# print(pnbinom(250, 50, 32/63, lower.tail=FALSE))
assert_allclose(nbinom.sf(250, 50, 32./63.), 1.460458510976452e-35)
def test_issue_19747():
# test that negative k does not raise an error in nbinom.logcdf
result = nbinom.logcdf([5, -1, 1], 5, 0.5)
reference = [-0.47313352, -np.inf, -2.21297293]
assert_allclose(result, reference)
def test_boost_divide_by_zero_issue_15101():
n = 1000
p = 0.01
k = 996
assert_allclose(binom.pmf(k, n, p), 0.0)
def test_skellam_gh11474():
# test issue reported in gh-11474 caused by `cdfchn`
mu = [1, 10, 100, 1000, 5000, 5050, 5100, 5250, 6000]
cdf = skellam.cdf(0, mu, mu)
# generated in R
# library(skellam)
# options(digits = 16)
# mu = c(1, 10, 100, 1000, 5000, 5050, 5100, 5250, 6000)
# pskellam(0, mu, mu, TRUE)
cdf_expected = [0.6542541612768356, 0.5448901559424127, 0.5141135799745580,
0.5044605891382528, 0.5019947363350450, 0.5019848365953181,
0.5019750827993392, 0.5019466621805060, 0.5018209330219539]
assert_allclose(cdf, cdf_expected)
class TestZipfian:
def test_zipfian_asymptotic(self):
# test limiting case that zipfian(a, n) -> zipf(a) as n-> oo
a = 6.5
N = 10000000
k = np.arange(1, 21)
assert_allclose(zipfian.pmf(k, a, N), zipf.pmf(k, a))
assert_allclose(zipfian.cdf(k, a, N), zipf.cdf(k, a))
assert_allclose(zipfian.sf(k, a, N), zipf.sf(k, a))
assert_allclose(zipfian.stats(a, N, moments='msvk'),
zipf.stats(a, moments='msvk'))
def test_zipfian_continuity(self):
# test that zipfian(0.999999, n) ~ zipfian(1.000001, n)
# (a = 1 switches between methods of calculating harmonic sum)
alt1, agt1 = 0.99999999, 1.00000001
N = 30
k = np.arange(1, N + 1)
assert_allclose(zipfian.pmf(k, alt1, N), zipfian.pmf(k, agt1, N),
rtol=5e-7)
assert_allclose(zipfian.cdf(k, alt1, N), zipfian.cdf(k, agt1, N),
rtol=5e-7)
assert_allclose(zipfian.sf(k, alt1, N), zipfian.sf(k, agt1, N),
rtol=5e-7)
assert_allclose(zipfian.stats(alt1, N, moments='msvk'),
zipfian.stats(agt1, N, moments='msvk'), rtol=5e-7)
def test_zipfian_R(self):
# test against R VGAM package
# library(VGAM)
# k <- c(13, 16, 1, 4, 4, 8, 10, 19, 5, 7)
# a <- c(1.56712977, 3.72656295, 5.77665117, 9.12168729, 5.79977172,
# 4.92784796, 9.36078764, 4.3739616 , 7.48171872, 4.6824154)
# n <- c(70, 80, 48, 65, 83, 89, 50, 30, 20, 20)
# pmf <- dzipf(k, N = n, shape = a)
# cdf <- pzipf(k, N = n, shape = a)
# print(pmf)
# print(cdf)
np.random.seed(0)
k = np.random.randint(1, 20, size=10)
a = np.random.rand(10)*10 + 1
n = np.random.randint(1, 100, size=10)
pmf = [8.076972e-03, 2.950214e-05, 9.799333e-01, 3.216601e-06,
3.158895e-04, 3.412497e-05, 4.350472e-10, 2.405773e-06,
5.860662e-06, 1.053948e-04]
cdf = [0.8964133, 0.9998666, 0.9799333, 0.9999995, 0.9998584,
0.9999458, 1.0000000, 0.9999920, 0.9999977, 0.9998498]
# skip the first point; zipUC is not accurate for low a, n
assert_allclose(zipfian.pmf(k, a, n)[1:], pmf[1:], rtol=1e-6)
assert_allclose(zipfian.cdf(k, a, n)[1:], cdf[1:], rtol=5e-5)
np.random.seed(0)
naive_tests = np.vstack((np.logspace(-2, 1, 10),
np.random.randint(2, 40, 10))).T
@pytest.mark.parametrize("a, n", naive_tests)
def test_zipfian_naive(self, a, n):
# test against bare-bones implementation
@np.vectorize
def Hns(n, s):
"""Naive implementation of harmonic sum"""
return (1/np.arange(1, n+1)**s).sum()
@np.vectorize
def pzip(k, a, n):
"""Naive implementation of zipfian pmf"""
if k < 1 or k > n:
return 0.
else:
return 1 / k**a / Hns(n, a)
k = np.arange(n+1)
pmf = pzip(k, a, n)
cdf = np.cumsum(pmf)
mean = np.average(k, weights=pmf)
var = np.average((k - mean)**2, weights=pmf)
std = var**0.5
skew = np.average(((k-mean)/std)**3, weights=pmf)
kurtosis = np.average(((k-mean)/std)**4, weights=pmf) - 3
assert_allclose(zipfian.pmf(k, a, n), pmf)
assert_allclose(zipfian.cdf(k, a, n), cdf)
assert_allclose(zipfian.stats(a, n, moments="mvsk"),
[mean, var, skew, kurtosis])
class TestNCH:
np.random.seed(2) # seeds 0 and 1 had some xl = xu; randint failed
shape = (2, 4, 3)
max_m = 100
m1 = np.random.randint(1, max_m, size=shape) # red balls
m2 = np.random.randint(1, max_m, size=shape) # white balls
N = m1 + m2 # total balls
n = randint.rvs(0, N, size=N.shape) # number of draws
xl = np.maximum(0, n-m2) # lower bound of support
xu = np.minimum(n, m1) # upper bound of support
x = randint.rvs(xl, xu, size=xl.shape)
odds = np.random.rand(*x.shape)*2
# test output is more readable when function names (strings) are passed
@pytest.mark.parametrize('dist_name',
['nchypergeom_fisher', 'nchypergeom_wallenius'])
def test_nch_hypergeom(self, dist_name):
# Both noncentral hypergeometric distributions reduce to the
# hypergeometric distribution when odds = 1
dists = {'nchypergeom_fisher': nchypergeom_fisher,
'nchypergeom_wallenius': nchypergeom_wallenius}
dist = dists[dist_name]
x, N, m1, n = self.x, self.N, self.m1, self.n
assert_allclose(dist.pmf(x, N, m1, n, odds=1),
hypergeom.pmf(x, N, m1, n))
def test_nchypergeom_fisher_naive(self):
# test against a very simple implementation
x, N, m1, n, odds = self.x, self.N, self.m1, self.n, self.odds
@np.vectorize
def pmf_mean_var(x, N, m1, n, w):
# simple implementation of nchypergeom_fisher pmf
m2 = N - m1
xl = np.maximum(0, n-m2)
xu = np.minimum(n, m1)
def f(x):
t1 = special_binom(m1, x)
t2 = special_binom(m2, n - x)
return t1 * t2 * w**x
def P(k):
return sum(f(y)*y**k for y in range(xl, xu + 1))
P0 = P(0)
P1 = P(1)
P2 = P(2)
pmf = f(x) / P0
mean = P1 / P0
var = P2 / P0 - (P1 / P0)**2
return pmf, mean, var
pmf, mean, var = pmf_mean_var(x, N, m1, n, odds)
assert_allclose(nchypergeom_fisher.pmf(x, N, m1, n, odds), pmf)
assert_allclose(nchypergeom_fisher.stats(N, m1, n, odds, moments='m'),
mean)
assert_allclose(nchypergeom_fisher.stats(N, m1, n, odds, moments='v'),
var)
def test_nchypergeom_wallenius_naive(self):
# test against a very simple implementation
np.random.seed(2)
shape = (2, 4, 3)
max_m = 100
m1 = np.random.randint(1, max_m, size=shape)
m2 = np.random.randint(1, max_m, size=shape)
N = m1 + m2
n = randint.rvs(0, N, size=N.shape)
xl = np.maximum(0, n-m2)
xu = np.minimum(n, m1)
x = randint.rvs(xl, xu, size=xl.shape)
w = np.random.rand(*x.shape)*2
def support(N, m1, n, w):
m2 = N - m1
xl = np.maximum(0, n-m2)
xu = np.minimum(n, m1)
return xl, xu
@np.vectorize
def mean(N, m1, n, w):
m2 = N - m1
xl, xu = support(N, m1, n, w)
def fun(u):
return u/m1 + (1 - (n-u)/m2)**w - 1
return root_scalar(fun, bracket=(xl, xu)).root
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
message="invalid value encountered in mean")
assert_allclose(nchypergeom_wallenius.mean(N, m1, n, w),
mean(N, m1, n, w), rtol=2e-2)
@np.vectorize
def variance(N, m1, n, w):
m2 = N - m1
u = mean(N, m1, n, w)
a = u * (m1 - u)
b = (n-u)*(u + m2 - n)
return N*a*b / ((N-1) * (m1*b + m2*a))
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
message="invalid value encountered in mean")
assert_allclose(
nchypergeom_wallenius.stats(N, m1, n, w, moments='v'),
variance(N, m1, n, w),
rtol=5e-2
)
@np.vectorize
def pmf(x, N, m1, n, w):
m2 = N - m1
xl, xu = support(N, m1, n, w)
def integrand(t):
D = w*(m1 - x) + (m2 - (n-x))
res = (1-t**(w/D))**x * (1-t**(1/D))**(n-x)
return res
def f(x):
t1 = special_binom(m1, x)
t2 = special_binom(m2, n - x)
the_integral = quad(integrand, 0, 1,
epsrel=1e-16, epsabs=1e-16)
return t1 * t2 * the_integral[0]
return f(x)
pmf0 = pmf(x, N, m1, n, w)
pmf1 = nchypergeom_wallenius.pmf(x, N, m1, n, w)
atol, rtol = 1e-6, 1e-6
i = np.abs(pmf1 - pmf0) < atol + rtol*np.abs(pmf0)
assert i.sum() > np.prod(shape) / 2 # works at least half the time
# for those that fail, discredit the naive implementation
for N, m1, n, w in zip(N[~i], m1[~i], n[~i], w[~i]):
# get the support
m2 = N - m1
xl, xu = support(N, m1, n, w)
x = np.arange(xl, xu + 1)
# calculate sum of pmf over the support
# the naive implementation is very wrong in these cases
assert pmf(x, N, m1, n, w).sum() < .5
assert_allclose(nchypergeom_wallenius.pmf(x, N, m1, n, w).sum(), 1)
def test_wallenius_against_mpmath(self):
# precompute data with mpmath since naive implementation above
# is not reliable. See source code in gh-13330.
M = 50
n = 30
N = 20
odds = 2.25
# Expected results, computed with mpmath.
sup = np.arange(21)
pmf = np.array([3.699003068656875e-20,
5.89398584245431e-17,
2.1594437742911123e-14,
3.221458044649955e-12,
2.4658279241205077e-10,
1.0965862603981212e-08,
3.057890479665704e-07,
5.622818831643761e-06,
7.056482841531681e-05,
0.000618899425358671,
0.003854172932571669,
0.01720592676256026,
0.05528844897093792,
0.12772363313574242,
0.21065898367825722,
0.24465958845359234,
0.1955114898110033,
0.10355390084949237,
0.03414490375225675,
0.006231989845775931,
0.0004715577304677075])
mean = 14.808018384813426
var = 2.6085975877923717
# nchypergeom_wallenius.pmf returns 0 for pmf(0) and pmf(1), and pmf(2)
# has only three digits of accuracy (~ 2.1511e-14).
assert_allclose(nchypergeom_wallenius.pmf(sup, M, n, N, odds), pmf,
rtol=1e-13, atol=1e-13)
assert_allclose(nchypergeom_wallenius.mean(M, n, N, odds),
mean, rtol=1e-13)
assert_allclose(nchypergeom_wallenius.var(M, n, N, odds),
var, rtol=1e-11)
@pytest.mark.parametrize('dist_name',
['nchypergeom_fisher', 'nchypergeom_wallenius'])
def test_rvs_shape(self, dist_name):
# Check that when given a size with more dimensions than the
# dimensions of the broadcast parameters, rvs returns an array
# with the correct shape.
dists = {'nchypergeom_fisher': nchypergeom_fisher,
'nchypergeom_wallenius': nchypergeom_wallenius}
dist = dists[dist_name]
x = dist.rvs(50, 30, [[10], [20]], [0.5, 1.0, 2.0], size=(5, 1, 2, 3))
assert x.shape == (5, 1, 2, 3)
@pytest.mark.parametrize("mu, q, expected",
[[10, 120, -1.240089881791596e-38],
[1500, 0, -86.61466680572661]])
def test_nbinom_11465(mu, q, expected):
# test nbinom.logcdf at extreme tails
size = 20
n, p = size, size/(size+mu)
# In R:
# options(digits=16)
# pnbinom(mu=10, size=20, q=120, log.p=TRUE)
assert_allclose(nbinom.logcdf(q, n, p), expected)
def test_gh_17146():
# Check that discrete distributions return PMF of zero at non-integral x.
# See gh-17146.
x = np.linspace(0, 1, 11)
p = 0.8
pmf = bernoulli(p).pmf(x)
i = (x % 1 == 0)
assert_allclose(pmf[-1], p)
assert_allclose(pmf[0], 1-p)
assert_equal(pmf[~i], 0)
class TestBetaNBinom:
@pytest.mark.parametrize('x, n, a, b, ref',
[[5, 5e6, 5, 20, 1.1520944824139114e-107],
[100, 50, 5, 20, 0.002855762954310226],
[10000, 1000, 5, 20, 1.9648515726019154e-05]])
def test_betanbinom_pmf(self, x, n, a, b, ref):
# test that PMF stays accurate in the distribution tails
# reference values computed with mpmath
# from mpmath import mp
# mp.dps = 500
# def betanbinom_pmf(k, n, a, b):
# k = mp.mpf(k)
# a = mp.mpf(a)
# b = mp.mpf(b)
# n = mp.mpf(n)
# return float(mp.binomial(n + k - mp.one, k)
# * mp.beta(a + n, b + k) / mp.beta(a, b))
assert_allclose(betanbinom.pmf(x, n, a, b), ref, rtol=1e-10)
@pytest.mark.parametrize('n, a, b, ref',
[[10000, 5000, 50, 0.12841520515722202],
[10, 9, 9, 7.9224400871459695],
[100, 1000, 10, 1.5849602176622748]])
def test_betanbinom_kurtosis(self, n, a, b, ref):
# reference values were computed via mpmath
# from mpmath import mp
# def kurtosis_betanegbinom(n, a, b):
# n = mp.mpf(n)
# a = mp.mpf(a)
# b = mp.mpf(b)
# four = mp.mpf(4.)
# mean = n * b / (a - mp.one)
# var = (n * b * (n + a - 1.) * (a + b - 1.)
# / ((a - 2.) * (a - 1.)**2.))
# def f(k):
# return (mp.binomial(n + k - mp.one, k)
# * mp.beta(a + n, b + k) / mp.beta(a, b)
# * (k - mean)**four)
# fourth_moment = mp.nsum(f, [0, mp.inf])
# return float(fourth_moment/var**2 - 3.)
assert_allclose(betanbinom.stats(n, a, b, moments="k"),
ref, rtol=3e-15)