333 lines
10 KiB
Python
333 lines
10 KiB
Python
import scipy as sp
|
|
|
|
from ...utils._plotting import _BinaryClassifierCurveDisplayMixin
|
|
from .._ranking import det_curve
|
|
|
|
|
|
class DetCurveDisplay(_BinaryClassifierCurveDisplayMixin):
|
|
"""DET curve visualization.
|
|
|
|
It is recommend to use :func:`~sklearn.metrics.DetCurveDisplay.from_estimator`
|
|
or :func:`~sklearn.metrics.DetCurveDisplay.from_predictions` to create a
|
|
visualizer. All parameters are stored as attributes.
|
|
|
|
Read more in the :ref:`User Guide <visualizations>`.
|
|
|
|
.. versionadded:: 0.24
|
|
|
|
Parameters
|
|
----------
|
|
fpr : ndarray
|
|
False positive rate.
|
|
|
|
fnr : ndarray
|
|
False negative rate.
|
|
|
|
estimator_name : str, default=None
|
|
Name of estimator. If None, the estimator name is not shown.
|
|
|
|
pos_label : int, float, bool or str, default=None
|
|
The label of the positive class.
|
|
|
|
Attributes
|
|
----------
|
|
line_ : matplotlib Artist
|
|
DET Curve.
|
|
|
|
ax_ : matplotlib Axes
|
|
Axes with DET Curve.
|
|
|
|
figure_ : matplotlib Figure
|
|
Figure containing the curve.
|
|
|
|
See Also
|
|
--------
|
|
det_curve : Compute error rates for different probability thresholds.
|
|
DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
|
|
some data.
|
|
DetCurveDisplay.from_predictions : Plot DET curve given the true and
|
|
predicted labels.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from sklearn.datasets import make_classification
|
|
>>> from sklearn.metrics import det_curve, DetCurveDisplay
|
|
>>> from sklearn.model_selection import train_test_split
|
|
>>> from sklearn.svm import SVC
|
|
>>> X, y = make_classification(n_samples=1000, random_state=0)
|
|
>>> X_train, X_test, y_train, y_test = train_test_split(
|
|
... X, y, test_size=0.4, random_state=0)
|
|
>>> clf = SVC(random_state=0).fit(X_train, y_train)
|
|
>>> y_pred = clf.decision_function(X_test)
|
|
>>> fpr, fnr, _ = det_curve(y_test, y_pred)
|
|
>>> display = DetCurveDisplay(
|
|
... fpr=fpr, fnr=fnr, estimator_name="SVC"
|
|
... )
|
|
>>> display.plot()
|
|
<...>
|
|
>>> plt.show()
|
|
"""
|
|
|
|
def __init__(self, *, fpr, fnr, estimator_name=None, pos_label=None):
|
|
self.fpr = fpr
|
|
self.fnr = fnr
|
|
self.estimator_name = estimator_name
|
|
self.pos_label = pos_label
|
|
|
|
@classmethod
|
|
def from_estimator(
|
|
cls,
|
|
estimator,
|
|
X,
|
|
y,
|
|
*,
|
|
sample_weight=None,
|
|
response_method="auto",
|
|
pos_label=None,
|
|
name=None,
|
|
ax=None,
|
|
**kwargs,
|
|
):
|
|
"""Plot DET curve given an estimator and data.
|
|
|
|
Read more in the :ref:`User Guide <visualizations>`.
|
|
|
|
.. versionadded:: 1.0
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator instance
|
|
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
|
in which the last estimator is a classifier.
|
|
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Input values.
|
|
|
|
y : array-like of shape (n_samples,)
|
|
Target values.
|
|
|
|
sample_weight : array-like of shape (n_samples,), default=None
|
|
Sample weights.
|
|
|
|
response_method : {'predict_proba', 'decision_function', 'auto'} \
|
|
default='auto'
|
|
Specifies whether to use :term:`predict_proba` or
|
|
:term:`decision_function` as the predicted target response. If set
|
|
to 'auto', :term:`predict_proba` is tried first and if it does not
|
|
exist :term:`decision_function` is tried next.
|
|
|
|
pos_label : int, float, bool or str, default=None
|
|
The label of the positive class. When `pos_label=None`, if `y_true`
|
|
is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
|
|
error will be raised.
|
|
|
|
name : str, default=None
|
|
Name of DET curve for labeling. If `None`, use the name of the
|
|
estimator.
|
|
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
**kwargs : dict
|
|
Additional keywords arguments passed to matplotlib `plot` function.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.DetCurveDisplay`
|
|
Object that stores computed values.
|
|
|
|
See Also
|
|
--------
|
|
det_curve : Compute error rates for different probability thresholds.
|
|
DetCurveDisplay.from_predictions : Plot DET curve given the true and
|
|
predicted labels.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from sklearn.datasets import make_classification
|
|
>>> from sklearn.metrics import DetCurveDisplay
|
|
>>> from sklearn.model_selection import train_test_split
|
|
>>> from sklearn.svm import SVC
|
|
>>> X, y = make_classification(n_samples=1000, random_state=0)
|
|
>>> X_train, X_test, y_train, y_test = train_test_split(
|
|
... X, y, test_size=0.4, random_state=0)
|
|
>>> clf = SVC(random_state=0).fit(X_train, y_train)
|
|
>>> DetCurveDisplay.from_estimator(
|
|
... clf, X_test, y_test)
|
|
<...>
|
|
>>> plt.show()
|
|
"""
|
|
y_pred, pos_label, name = cls._validate_and_get_response_values(
|
|
estimator,
|
|
X,
|
|
y,
|
|
response_method=response_method,
|
|
pos_label=pos_label,
|
|
name=name,
|
|
)
|
|
|
|
return cls.from_predictions(
|
|
y_true=y,
|
|
y_pred=y_pred,
|
|
sample_weight=sample_weight,
|
|
name=name,
|
|
ax=ax,
|
|
pos_label=pos_label,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_predictions(
|
|
cls,
|
|
y_true,
|
|
y_pred,
|
|
*,
|
|
sample_weight=None,
|
|
pos_label=None,
|
|
name=None,
|
|
ax=None,
|
|
**kwargs,
|
|
):
|
|
"""Plot the DET curve given the true and predicted labels.
|
|
|
|
Read more in the :ref:`User Guide <visualizations>`.
|
|
|
|
.. versionadded:: 1.0
|
|
|
|
Parameters
|
|
----------
|
|
y_true : array-like of shape (n_samples,)
|
|
True labels.
|
|
|
|
y_pred : array-like of shape (n_samples,)
|
|
Target scores, can either be probability estimates of the positive
|
|
class, confidence values, or non-thresholded measure of decisions
|
|
(as returned by `decision_function` on some classifiers).
|
|
|
|
sample_weight : array-like of shape (n_samples,), default=None
|
|
Sample weights.
|
|
|
|
pos_label : int, float, bool or str, default=None
|
|
The label of the positive class. When `pos_label=None`, if `y_true`
|
|
is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
|
|
error will be raised.
|
|
|
|
name : str, default=None
|
|
Name of DET curve for labeling. If `None`, name will be set to
|
|
`"Classifier"`.
|
|
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
**kwargs : dict
|
|
Additional keywords arguments passed to matplotlib `plot` function.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.DetCurveDisplay`
|
|
Object that stores computed values.
|
|
|
|
See Also
|
|
--------
|
|
det_curve : Compute error rates for different probability thresholds.
|
|
DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
|
|
some data.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from sklearn.datasets import make_classification
|
|
>>> from sklearn.metrics import DetCurveDisplay
|
|
>>> from sklearn.model_selection import train_test_split
|
|
>>> from sklearn.svm import SVC
|
|
>>> X, y = make_classification(n_samples=1000, random_state=0)
|
|
>>> X_train, X_test, y_train, y_test = train_test_split(
|
|
... X, y, test_size=0.4, random_state=0)
|
|
>>> clf = SVC(random_state=0).fit(X_train, y_train)
|
|
>>> y_pred = clf.decision_function(X_test)
|
|
>>> DetCurveDisplay.from_predictions(
|
|
... y_test, y_pred)
|
|
<...>
|
|
>>> plt.show()
|
|
"""
|
|
pos_label_validated, name = cls._validate_from_predictions_params(
|
|
y_true, y_pred, sample_weight=sample_weight, pos_label=pos_label, name=name
|
|
)
|
|
|
|
fpr, fnr, _ = det_curve(
|
|
y_true,
|
|
y_pred,
|
|
pos_label=pos_label,
|
|
sample_weight=sample_weight,
|
|
)
|
|
|
|
viz = cls(
|
|
fpr=fpr,
|
|
fnr=fnr,
|
|
estimator_name=name,
|
|
pos_label=pos_label_validated,
|
|
)
|
|
|
|
return viz.plot(ax=ax, name=name, **kwargs)
|
|
|
|
def plot(self, ax=None, *, name=None, **kwargs):
|
|
"""Plot visualization.
|
|
|
|
Parameters
|
|
----------
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
name : str, default=None
|
|
Name of DET curve for labeling. If `None`, use `estimator_name` if
|
|
it is not `None`, otherwise no labeling is shown.
|
|
|
|
**kwargs : dict
|
|
Additional keywords arguments passed to matplotlib `plot` function.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.DetCurveDisplay`
|
|
Object that stores computed values.
|
|
"""
|
|
self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name)
|
|
|
|
line_kwargs = {} if name is None else {"label": name}
|
|
line_kwargs.update(**kwargs)
|
|
|
|
(self.line_,) = self.ax_.plot(
|
|
sp.stats.norm.ppf(self.fpr),
|
|
sp.stats.norm.ppf(self.fnr),
|
|
**line_kwargs,
|
|
)
|
|
info_pos_label = (
|
|
f" (Positive label: {self.pos_label})" if self.pos_label is not None else ""
|
|
)
|
|
|
|
xlabel = "False Positive Rate" + info_pos_label
|
|
ylabel = "False Negative Rate" + info_pos_label
|
|
self.ax_.set(xlabel=xlabel, ylabel=ylabel)
|
|
|
|
if "label" in line_kwargs:
|
|
self.ax_.legend(loc="lower right")
|
|
|
|
ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
|
|
tick_locations = sp.stats.norm.ppf(ticks)
|
|
tick_labels = [
|
|
"{:.0%}".format(s) if (100 * s).is_integer() else "{:.1%}".format(s)
|
|
for s in ticks
|
|
]
|
|
self.ax_.set_xticks(tick_locations)
|
|
self.ax_.set_xticklabels(tick_labels)
|
|
self.ax_.set_xlim(-3, 3)
|
|
self.ax_.set_yticks(tick_locations)
|
|
self.ax_.set_yticklabels(tick_labels)
|
|
self.ax_.set_ylim(-3, 3)
|
|
|
|
return self
|