406 lines
14 KiB
Python
406 lines
14 KiB
Python
import numbers
|
|
|
|
import numpy as np
|
|
|
|
from ...utils import _safe_indexing, check_matplotlib_support, check_random_state
|
|
|
|
|
|
class PredictionErrorDisplay:
|
|
"""Visualization of the prediction error of a regression model.
|
|
|
|
This tool can display "residuals vs predicted" or "actual vs predicted"
|
|
using scatter plots to qualitatively assess the behavior of a regressor,
|
|
preferably on held-out data points.
|
|
|
|
See the details in the docstrings of
|
|
:func:`~sklearn.metrics.PredictionErrorDisplay.from_estimator` or
|
|
:func:`~sklearn.metrics.PredictionErrorDisplay.from_predictions` to
|
|
create a visualizer. All parameters are stored as attributes.
|
|
|
|
For general information regarding `scikit-learn` visualization tools, read
|
|
more in the :ref:`Visualization Guide <visualizations>`.
|
|
For details regarding interpreting these plots, refer to the
|
|
:ref:`Model Evaluation Guide <visualization_regression_evaluation>`.
|
|
|
|
.. versionadded:: 1.2
|
|
|
|
Parameters
|
|
----------
|
|
y_true : ndarray of shape (n_samples,)
|
|
True values.
|
|
|
|
y_pred : ndarray of shape (n_samples,)
|
|
Prediction values.
|
|
|
|
Attributes
|
|
----------
|
|
line_ : matplotlib Artist
|
|
Optimal line representing `y_true == y_pred`. Therefore, it is a
|
|
diagonal line for `kind="predictions"` and a horizontal line for
|
|
`kind="residuals"`.
|
|
|
|
errors_lines_ : matplotlib Artist or None
|
|
Residual lines. If `with_errors=False`, then it is set to `None`.
|
|
|
|
scatter_ : matplotlib Artist
|
|
Scatter data points.
|
|
|
|
ax_ : matplotlib Axes
|
|
Axes with the different matplotlib axis.
|
|
|
|
figure_ : matplotlib Figure
|
|
Figure containing the scatter and lines.
|
|
|
|
See Also
|
|
--------
|
|
PredictionErrorDisplay.from_estimator : Prediction error visualization
|
|
given an estimator and some data.
|
|
PredictionErrorDisplay.from_predictions : Prediction error visualization
|
|
given the true and predicted targets.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from sklearn.datasets import load_diabetes
|
|
>>> from sklearn.linear_model import Ridge
|
|
>>> from sklearn.metrics import PredictionErrorDisplay
|
|
>>> X, y = load_diabetes(return_X_y=True)
|
|
>>> ridge = Ridge().fit(X, y)
|
|
>>> y_pred = ridge.predict(X)
|
|
>>> display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
|
|
>>> display.plot()
|
|
<...>
|
|
>>> plt.show()
|
|
"""
|
|
|
|
def __init__(self, *, y_true, y_pred):
|
|
self.y_true = y_true
|
|
self.y_pred = y_pred
|
|
|
|
def plot(
|
|
self,
|
|
ax=None,
|
|
*,
|
|
kind="residual_vs_predicted",
|
|
scatter_kwargs=None,
|
|
line_kwargs=None,
|
|
):
|
|
"""Plot visualization.
|
|
|
|
Extra keyword arguments will be passed to matplotlib's ``plot``.
|
|
|
|
Parameters
|
|
----------
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
|
|
default="residual_vs_predicted"
|
|
The type of plot to draw:
|
|
|
|
- "actual_vs_predicted" draws the observed values (y-axis) vs.
|
|
the predicted values (x-axis).
|
|
- "residual_vs_predicted" draws the residuals, i.e. difference
|
|
between observed and predicted values, (y-axis) vs. the predicted
|
|
values (x-axis).
|
|
|
|
scatter_kwargs : dict, default=None
|
|
Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
|
|
call.
|
|
|
|
line_kwargs : dict, default=None
|
|
Dictionary with keyword passed to the `matplotlib.pyplot.plot`
|
|
call to draw the optimal line.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.PredictionErrorDisplay`
|
|
|
|
Object that stores computed values.
|
|
"""
|
|
check_matplotlib_support(f"{self.__class__.__name__}.plot")
|
|
|
|
expected_kind = ("actual_vs_predicted", "residual_vs_predicted")
|
|
if kind not in expected_kind:
|
|
raise ValueError(
|
|
f"`kind` must be one of {', '.join(expected_kind)}. "
|
|
f"Got {kind!r} instead."
|
|
)
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
if scatter_kwargs is None:
|
|
scatter_kwargs = {}
|
|
if line_kwargs is None:
|
|
line_kwargs = {}
|
|
|
|
default_scatter_kwargs = {"color": "tab:blue", "alpha": 0.8}
|
|
default_line_kwargs = {"color": "black", "alpha": 0.7, "linestyle": "--"}
|
|
|
|
scatter_kwargs = {**default_scatter_kwargs, **scatter_kwargs}
|
|
line_kwargs = {**default_line_kwargs, **line_kwargs}
|
|
|
|
if ax is None:
|
|
_, ax = plt.subplots()
|
|
|
|
if kind == "actual_vs_predicted":
|
|
max_value = max(np.max(self.y_true), np.max(self.y_pred))
|
|
min_value = min(np.min(self.y_true), np.min(self.y_pred))
|
|
self.line_ = ax.plot(
|
|
[min_value, max_value], [min_value, max_value], **line_kwargs
|
|
)[0]
|
|
|
|
x_data, y_data = self.y_pred, self.y_true
|
|
xlabel, ylabel = "Predicted values", "Actual values"
|
|
|
|
self.scatter_ = ax.scatter(x_data, y_data, **scatter_kwargs)
|
|
|
|
# force to have a squared axis
|
|
ax.set_aspect("equal", adjustable="datalim")
|
|
ax.set_xticks(np.linspace(min_value, max_value, num=5))
|
|
ax.set_yticks(np.linspace(min_value, max_value, num=5))
|
|
else: # kind == "residual_vs_predicted"
|
|
self.line_ = ax.plot(
|
|
[np.min(self.y_pred), np.max(self.y_pred)],
|
|
[0, 0],
|
|
**line_kwargs,
|
|
)[0]
|
|
self.scatter_ = ax.scatter(
|
|
self.y_pred, self.y_true - self.y_pred, **scatter_kwargs
|
|
)
|
|
xlabel, ylabel = "Predicted values", "Residuals (actual - predicted)"
|
|
|
|
ax.set(xlabel=xlabel, ylabel=ylabel)
|
|
|
|
self.ax_ = ax
|
|
self.figure_ = ax.figure
|
|
|
|
return self
|
|
|
|
@classmethod
|
|
def from_estimator(
|
|
cls,
|
|
estimator,
|
|
X,
|
|
y,
|
|
*,
|
|
kind="residual_vs_predicted",
|
|
subsample=1_000,
|
|
random_state=None,
|
|
ax=None,
|
|
scatter_kwargs=None,
|
|
line_kwargs=None,
|
|
):
|
|
"""Plot the prediction error given a regressor and some data.
|
|
|
|
For general information regarding `scikit-learn` visualization tools,
|
|
read more in the :ref:`Visualization Guide <visualizations>`.
|
|
For details regarding interpreting these plots, refer to the
|
|
:ref:`Model Evaluation Guide <visualization_regression_evaluation>`.
|
|
|
|
.. versionadded:: 1.2
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator instance
|
|
Fitted regressor or a fitted :class:`~sklearn.pipeline.Pipeline`
|
|
in which the last estimator is a regressor.
|
|
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Input values.
|
|
|
|
y : array-like of shape (n_samples,)
|
|
Target values.
|
|
|
|
kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
|
|
default="residual_vs_predicted"
|
|
The type of plot to draw:
|
|
|
|
- "actual_vs_predicted" draws the observed values (y-axis) vs.
|
|
the predicted values (x-axis).
|
|
- "residual_vs_predicted" draws the residuals, i.e. difference
|
|
between observed and predicted values, (y-axis) vs. the predicted
|
|
values (x-axis).
|
|
|
|
subsample : float, int or None, default=1_000
|
|
Sampling the samples to be shown on the scatter plot. If `float`,
|
|
it should be between 0 and 1 and represents the proportion of the
|
|
original dataset. If `int`, it represents the number of samples
|
|
display on the scatter plot. If `None`, no subsampling will be
|
|
applied. by default, 1000 samples or less will be displayed.
|
|
|
|
random_state : int or RandomState, default=None
|
|
Controls the randomness when `subsample` is not `None`.
|
|
See :term:`Glossary <random_state>` for details.
|
|
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
scatter_kwargs : dict, default=None
|
|
Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
|
|
call.
|
|
|
|
line_kwargs : dict, default=None
|
|
Dictionary with keyword passed to the `matplotlib.pyplot.plot`
|
|
call to draw the optimal line.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.PredictionErrorDisplay`
|
|
Object that stores the computed values.
|
|
|
|
See Also
|
|
--------
|
|
PredictionErrorDisplay : Prediction error visualization for regression.
|
|
PredictionErrorDisplay.from_predictions : Prediction error visualization
|
|
given the true and predicted targets.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from sklearn.datasets import load_diabetes
|
|
>>> from sklearn.linear_model import Ridge
|
|
>>> from sklearn.metrics import PredictionErrorDisplay
|
|
>>> X, y = load_diabetes(return_X_y=True)
|
|
>>> ridge = Ridge().fit(X, y)
|
|
>>> disp = PredictionErrorDisplay.from_estimator(ridge, X, y)
|
|
>>> plt.show()
|
|
"""
|
|
check_matplotlib_support(f"{cls.__name__}.from_estimator")
|
|
|
|
y_pred = estimator.predict(X)
|
|
|
|
return cls.from_predictions(
|
|
y_true=y,
|
|
y_pred=y_pred,
|
|
kind=kind,
|
|
subsample=subsample,
|
|
random_state=random_state,
|
|
ax=ax,
|
|
scatter_kwargs=scatter_kwargs,
|
|
line_kwargs=line_kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_predictions(
|
|
cls,
|
|
y_true,
|
|
y_pred,
|
|
*,
|
|
kind="residual_vs_predicted",
|
|
subsample=1_000,
|
|
random_state=None,
|
|
ax=None,
|
|
scatter_kwargs=None,
|
|
line_kwargs=None,
|
|
):
|
|
"""Plot the prediction error given the true and predicted targets.
|
|
|
|
For general information regarding `scikit-learn` visualization tools,
|
|
read more in the :ref:`Visualization Guide <visualizations>`.
|
|
For details regarding interpreting these plots, refer to the
|
|
:ref:`Model Evaluation Guide <visualization_regression_evaluation>`.
|
|
|
|
.. versionadded:: 1.2
|
|
|
|
Parameters
|
|
----------
|
|
y_true : array-like of shape (n_samples,)
|
|
True target values.
|
|
|
|
y_pred : array-like of shape (n_samples,)
|
|
Predicted target values.
|
|
|
|
kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
|
|
default="residual_vs_predicted"
|
|
The type of plot to draw:
|
|
|
|
- "actual_vs_predicted" draws the observed values (y-axis) vs.
|
|
the predicted values (x-axis).
|
|
- "residual_vs_predicted" draws the residuals, i.e. difference
|
|
between observed and predicted values, (y-axis) vs. the predicted
|
|
values (x-axis).
|
|
|
|
subsample : float, int or None, default=1_000
|
|
Sampling the samples to be shown on the scatter plot. If `float`,
|
|
it should be between 0 and 1 and represents the proportion of the
|
|
original dataset. If `int`, it represents the number of samples
|
|
display on the scatter plot. If `None`, no subsampling will be
|
|
applied. by default, 1000 samples or less will be displayed.
|
|
|
|
random_state : int or RandomState, default=None
|
|
Controls the randomness when `subsample` is not `None`.
|
|
See :term:`Glossary <random_state>` for details.
|
|
|
|
ax : matplotlib axes, default=None
|
|
Axes object to plot on. If `None`, a new figure and axes is
|
|
created.
|
|
|
|
scatter_kwargs : dict, default=None
|
|
Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
|
|
call.
|
|
|
|
line_kwargs : dict, default=None
|
|
Dictionary with keyword passed to the `matplotlib.pyplot.plot`
|
|
call to draw the optimal line.
|
|
|
|
Returns
|
|
-------
|
|
display : :class:`~sklearn.metrics.PredictionErrorDisplay`
|
|
Object that stores the computed values.
|
|
|
|
See Also
|
|
--------
|
|
PredictionErrorDisplay : Prediction error visualization for regression.
|
|
PredictionErrorDisplay.from_estimator : Prediction error visualization
|
|
given an estimator and some data.
|
|
|
|
Examples
|
|
--------
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from sklearn.datasets import load_diabetes
|
|
>>> from sklearn.linear_model import Ridge
|
|
>>> from sklearn.metrics import PredictionErrorDisplay
|
|
>>> X, y = load_diabetes(return_X_y=True)
|
|
>>> ridge = Ridge().fit(X, y)
|
|
>>> y_pred = ridge.predict(X)
|
|
>>> disp = PredictionErrorDisplay.from_predictions(y_true=y, y_pred=y_pred)
|
|
>>> plt.show()
|
|
"""
|
|
check_matplotlib_support(f"{cls.__name__}.from_predictions")
|
|
|
|
random_state = check_random_state(random_state)
|
|
|
|
n_samples = len(y_true)
|
|
if isinstance(subsample, numbers.Integral):
|
|
if subsample <= 0:
|
|
raise ValueError(
|
|
f"When an integer, subsample={subsample} should be positive."
|
|
)
|
|
elif isinstance(subsample, numbers.Real):
|
|
if subsample <= 0 or subsample >= 1:
|
|
raise ValueError(
|
|
f"When a floating-point, subsample={subsample} should"
|
|
" be in the (0, 1) range."
|
|
)
|
|
subsample = int(n_samples * subsample)
|
|
|
|
if subsample is not None and subsample < n_samples:
|
|
indices = random_state.choice(np.arange(n_samples), size=subsample)
|
|
y_true = _safe_indexing(y_true, indices, axis=0)
|
|
y_pred = _safe_indexing(y_pred, indices, axis=0)
|
|
|
|
viz = cls(
|
|
y_true=y_true,
|
|
y_pred=y_pred,
|
|
)
|
|
|
|
return viz.plot(
|
|
ax=ax,
|
|
kind=kind,
|
|
scatter_kwargs=scatter_kwargs,
|
|
line_kwargs=line_kwargs,
|
|
)
|