ai-content-maker/.venv/Lib/site-packages/sklearn/metrics/cluster/__init__.py

53 lines
1.4 KiB
Python

"""
The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for
cluster analysis results. There are two forms of evaluation:
- supervised, which uses a ground truth class values for each sample.
- unsupervised, which does not and measures the 'quality' of the model itself.
"""
from ._bicluster import consensus_score
from ._supervised import (
adjusted_mutual_info_score,
adjusted_rand_score,
completeness_score,
contingency_matrix,
entropy,
expected_mutual_information,
fowlkes_mallows_score,
homogeneity_completeness_v_measure,
homogeneity_score,
mutual_info_score,
normalized_mutual_info_score,
pair_confusion_matrix,
rand_score,
v_measure_score,
)
from ._unsupervised import (
calinski_harabasz_score,
davies_bouldin_score,
silhouette_samples,
silhouette_score,
)
__all__ = [
"adjusted_mutual_info_score",
"normalized_mutual_info_score",
"adjusted_rand_score",
"rand_score",
"completeness_score",
"pair_confusion_matrix",
"contingency_matrix",
"expected_mutual_information",
"homogeneity_completeness_v_measure",
"homogeneity_score",
"mutual_info_score",
"v_measure_score",
"fowlkes_mallows_score",
"entropy",
"silhouette_samples",
"silhouette_score",
"calinski_harabasz_score",
"davies_bouldin_score",
"consensus_score",
]