ai-content-maker/.venv/Lib/site-packages/spacy/lang/tr/lex_attrs.py

89 lines
1.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from ...attrs import LIKE_NUM
# Thirteen, fifteen etc. are written separate: on üç
_num_words = [
"bir",
"iki",
"üç",
"dört",
"beş",
"altı",
"yedi",
"sekiz",
"dokuz",
"on",
"yirmi",
"otuz",
"kırk",
"elli",
"altmış",
"yetmiş",
"seksen",
"doksan",
"yüz",
"bin",
"milyon",
"milyar",
"trilyon",
"katrilyon",
"kentilyon",
]
_ordinal_words = [
"birinci",
"ikinci",
"üçüncü",
"dördüncü",
"beşinci",
"altıncı",
"yedinci",
"sekizinci",
"dokuzuncu",
"onuncu",
"yirminci",
"otuzuncu",
"kırkıncı",
"ellinci",
"altmışıncı",
"yetmişinci",
"sekseninci",
"doksanıncı",
"yüzüncü",
"bininci",
"milyonuncu",
"milyarıncı",
"trilyonuncu",
"katrilyonuncu",
"kentilyonuncu",
]
_ordinal_endings = ("inci", "ıncı", "nci", "ncı", "uncu", "üncü")
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
text_lower = text.lower()
# Check cardinal number
if text_lower in _num_words:
return True
# Check ordinal number
if text_lower in _ordinal_words:
return True
if text_lower.endswith(_ordinal_endings):
if text_lower[:-3].isdigit() or text_lower[:-4].isdigit():
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}