ai-content-maker/.venv/Lib/site-packages/sympy/assumptions/relation/binrel.py

213 lines
6.2 KiB
Python

"""
General binary relations.
"""
from typing import Optional
from sympy.core.singleton import S
from sympy.assumptions import AppliedPredicate, ask, Predicate, Q # type: ignore
from sympy.core.kind import BooleanKind
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.logic.boolalg import conjuncts, Not
__all__ = ["BinaryRelation", "AppliedBinaryRelation"]
class BinaryRelation(Predicate):
"""
Base class for all binary relational predicates.
Explanation
===========
Binary relation takes two arguments and returns ``AppliedBinaryRelation``
instance. To evaluate it to boolean value, use :obj:`~.ask()` or
:obj:`~.refine()` function.
You can add support for new types by registering the handler to dispatcher.
See :obj:`~.Predicate()` for more information about predicate dispatching.
Examples
========
Applying and evaluating to boolean value:
>>> from sympy import Q, ask, sin, cos
>>> from sympy.abc import x
>>> Q.eq(sin(x)**2+cos(x)**2, 1)
Q.eq(sin(x)**2 + cos(x)**2, 1)
>>> ask(_)
True
You can define a new binary relation by subclassing and dispatching.
Here, we define a relation $R$ such that $x R y$ returns true if
$x = y + 1$.
>>> from sympy import ask, Number, Q
>>> from sympy.assumptions import BinaryRelation
>>> class MyRel(BinaryRelation):
... name = "R"
... is_reflexive = False
>>> Q.R = MyRel()
>>> @Q.R.register(Number, Number)
... def _(n1, n2, assumptions):
... return ask(Q.zero(n1 - n2 - 1), assumptions)
>>> Q.R(2, 1)
Q.R(2, 1)
Now, we can use ``ask()`` to evaluate it to boolean value.
>>> ask(Q.R(2, 1))
True
>>> ask(Q.R(1, 2))
False
``Q.R`` returns ``False`` with minimum cost if two arguments have same
structure because it is antireflexive relation [1] by
``is_reflexive = False``.
>>> ask(Q.R(x, x))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Reflexive_relation
"""
is_reflexive: Optional[bool] = None
is_symmetric: Optional[bool] = None
def __call__(self, *args):
if not len(args) == 2:
raise ValueError("Binary relation takes two arguments, but got %s." % len(args))
return AppliedBinaryRelation(self, *args)
@property
def reversed(self):
if self.is_symmetric:
return self
return None
@property
def negated(self):
return None
def _compare_reflexive(self, lhs, rhs):
# quick exit for structurally same arguments
# do not check != here because it cannot catch the
# equivalent arguments with different structures.
# reflexivity does not hold to NaN
if lhs is S.NaN or rhs is S.NaN:
return None
reflexive = self.is_reflexive
if reflexive is None:
pass
elif reflexive and (lhs == rhs):
return True
elif not reflexive and (lhs == rhs):
return False
return None
def eval(self, args, assumptions=True):
# quick exit for structurally same arguments
ret = self._compare_reflexive(*args)
if ret is not None:
return ret
# don't perform simplify on args here. (done by AppliedBinaryRelation._eval_ask)
# evaluate by multipledispatch
lhs, rhs = args
ret = self.handler(lhs, rhs, assumptions=assumptions)
if ret is not None:
return ret
# check reversed order if the relation is reflexive
if self.is_reflexive:
types = (type(lhs), type(rhs))
if self.handler.dispatch(*types) is not self.handler.dispatch(*reversed(types)):
ret = self.handler(rhs, lhs, assumptions=assumptions)
return ret
class AppliedBinaryRelation(AppliedPredicate):
"""
The class of expressions resulting from applying ``BinaryRelation``
to the arguments.
"""
@property
def lhs(self):
"""The left-hand side of the relation."""
return self.arguments[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self.arguments[1]
@property
def reversed(self):
"""
Try to return the relationship with sides reversed.
"""
revfunc = self.function.reversed
if revfunc is None:
return self
return revfunc(self.rhs, self.lhs)
@property
def reversedsign(self):
"""
Try to return the relationship with signs reversed.
"""
revfunc = self.function.reversed
if revfunc is None:
return self
if not any(side.kind is BooleanKind for side in self.arguments):
return revfunc(-self.lhs, -self.rhs)
return self
@property
def negated(self):
neg_rel = self.function.negated
if neg_rel is None:
return Not(self, evaluate=False)
return neg_rel(*self.arguments)
def _eval_ask(self, assumptions):
conj_assumps = set()
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
for a in conjuncts(assumptions):
if a.func in binrelpreds:
conj_assumps.add(binrelpreds[type(a)](*a.args))
else:
conj_assumps.add(a)
# After CNF in assumptions module is modified to take polyadic
# predicate, this will be removed
if any(rel in conj_assumps for rel in (self, self.reversed)):
return True
neg_rels = (self.negated, self.reversed.negated, Not(self, evaluate=False),
Not(self.reversed, evaluate=False))
if any(rel in conj_assumps for rel in neg_rels):
return False
# evaluation using multipledispatching
ret = self.function.eval(self.arguments, assumptions)
if ret is not None:
return ret
# simplify the args and try again
args = tuple(a.simplify() for a in self.arguments)
return self.function.eval(args, assumptions)
def __bool__(self):
ret = ask(self)
if ret is None:
raise TypeError("Cannot determine truth value of %s" % self)
return ret